
Advanced Systems Lab Report
Autumn Semester 2017

Name: IVAN TISHCHENKO
Legi: 17-945-536

Grading

Section Points
1
2
3
4
5
6
7

Total

1

1 System Overview

This section contains the description of the implementation of the distributed middle-ware sys-
tem which is designed to run on Microsoft Azure platform. All the work has been performed on
the GNU/Linux operating system, to which the designed system is primarily targeted. The sec-
tion highlights design decisions which were relevant while performing the experiments, explains
how messages are parsed and how instrumentation is performed in a multi-threaded environ-
ment. The system is illustrated with a figure which contains all the threads and queues of the
system (network and the memcached servers included), followed by explanations that show how
requests of different types are handled in the system. The details regarding the artifacts related
to the system are included at the README file at he git repository.

1.1 System’s architecture

The following subsection describes overall system’s architecture. The system designed for the
course 1 contains the following components:

• RunMW 2 - Serves as the main entry point for the middle-ware system. Extended
boilerplate originally provided according to the course specification. The client launches a
command line application and specifies the command line parameters such as: IP address
of the middle-ware, port on which middle-ware operates, IP addresses and corresponding
port of the memcached servers, flag which enables sharded GETS.

• MiddlewareMain 3 - Main class of the system. Represents system’s architecture and
assembles its components. This class is responsible for starting middle-ware’s components
such as the NetThread and all the Workers. Furthermore it contains systems crucial
architectural components such as workers pool, incoming request queue and cyclic counter
for the round robin pattern. The entry point is the run method. The class is also contains
the so called ”shut down hook”, which is triggered on systems exit.

• NetThread 4 - One of the most crucial components of the system’s is it’s network thread.
NetThread extends Java’s Thread class and is responsible for dealing with the incoming
network requests from clients on the specified port. After accepting the requests Net-
Thread queue the Request into the internal queue of requests. NetThread relies on the
Java’s NIO package, which is a natural choice in the setting where a single thread has to
deal with multiple channels for data in the non-blocking IO fashion. The main method of
the class is serve(), which contains a Selector object, which monitors channels for events.
In NIO implementations the data is always read from a Channel into a Buffer, which
doesn’t cause blocking. This feature allows us accepting other client connections, while
the channel is reading request data into a buffer.

• Worker 5 - This class represents another important architectural component, namely
the Worker Thread. Before starting it’s operation each instance of Worker opens the
connections to the memcached servers, which remain open permanently until shutdown.
The Worker thread dequeues the Request object from the internal jobs(request) queue

1https://gitlab.ethz.ch/tivan/asl-fall17-project/tree/master/src/ch/ethz/asl/main
2https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/RunMW.java
3https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/

MiddlewareMain.java
4https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/NetThread.

java
5https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/Worker.java

Name: IVAN TISHCHENKO Legi: 17-945-536 2

https://gitlab.ethz.ch/tivan/asl-fall17-project/tree/master/src/ch/ethz/asl/main
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/RunMW.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/MiddlewareMain.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/MiddlewareMain.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/NetThread.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/NetThread.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/Worker.java

which is located in NetThread. After the job is taken from the queue, each Worker
object is capable of handling SET, GET, MULTI-GET(both sharded and non-sharded)
and UNSUPORTED requests. At the reception of all responses Worker threads forwards
processed/assembles response back to clients. See next section for detailed description of
request handling.

• Request 6 - The class is the representation of incoming requests. The same object is
used to represent multiple types of requests. Request class serves as a data wrapper
for requests representation containing fields such as Request type, Requests message and
SocketChannel, which provides the gate of communication back to the client after the
responses from servers have been acquired.

• Parser 7 - This class contains helper methods commonly used by other components in
the system. It represents parsing, processing, information extraction and other related
operations performed on system’s incoming data. The main purpose of class is to decouple
repetitive data manipulation tasks from architectural components.

• CycleCounter 8 - The class servers as an implementation of the modular counter (e.g.
in case of 6 requests and 3 servers it’s distributed to server with IDs as: 0, 1, 2, 0, 1, 2).
Updating this counter is blocking, thus the object is thread-safe and can be shared across
multiple instances. The main purpose of the CycleCounter is to implement the Round
Robin (RR) scheduling pattern in order to distribute the load to multiple servers.

• Statistics 9 - The object is the structure implementation of the required instrumentation.
Contains the fields with required statistics to be measured. Each worker thread would have
it’s own copy of Statistics object, which enables easy aggregation when the middle-ware
shuts down.

• ShutDownHook 10 - The code contained in this objected is executed, when user shuts
down the middle-ware application. ShutDownHook is a suitable place for aggregating all
of the middle-ware’s statistics and printing the final results, which were used later in the
experiments, plotting and modeling.

• Histogram 11 - The class represents a histogram of request times with the step of 0.1
msec, which is printed on programs shut down. Takes the list of all response times as an
input and assigns each response time value to the corresponding been.

1.2 Request handling

As depicted on the components figure the entry point of the Middle-ware for all Requests is the
NetThread. NetThread listens for all incoming requests from clients Memtier 1...N . Although
NetThread is a single thread it is capable of handling multiple events in non blocking manner

6https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/Request.

java
7https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/Parser.java
8https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/

CycleCounter.java
9https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/Statistics.

java
10https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/

ShutDownHook.java
11https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/Histogram.

java

Name: IVAN TISHCHENKO Legi: 17-945-536 3

https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/Request.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/Request.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/Parser.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/CycleCounter.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/CycleCounter.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/Statistics.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/Statistics.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/ShutDownHook.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/ShutDownHook.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/Histogram.java
https://gitlab.ethz.ch/tivan/asl-fall17-project/blob/master/src/ch/ethz/asl/main/Histogram.java

as described earlier. On reception NetThread reads text of the request and classifies it with the
help of a method located in the Parser class. After construction of Request object NetThread
puts the object into the request queue. The request queue is a blocking object, which could be
safely shared among Workers 1...N from the thread pool. Afterwards the job is taken by the
Worker. Each Worker has a socket stream to all of the memcached servers.

Figure 1: System’s components

Based on the type of the Request, Workers send requests to servers:

• SET. In case of SET the data is replicated to all the memcached servers. In this case
worker would make a blocking write thus waiting for all responses from all servers. After-
wards a worker parses all the response and checks for errors and if there is any it sends it
back to client, in case there are no errors a single success message is selected and forwarded
back to client.

• GET. In case of GET the request is forwarded to only a single memcached server, which
is regulated by the Round Robin scheduling algorithm to distribute the load among the
available servers. There is a single response message in this case which is forwarded
to client. Figure 2a demonstrates equal round robin load scheduling while performing
read-only workload.

• Non-shared MULTI-GET is similar in implementation to the GET, the only difference
is that in non-sharded MULTI-GET multiple keys are requested/retrieved unlike a single
key in GET, this method also relies on Round Robin scheduling as the GET one. The
response from server is forwarded to client. Figure 2b demonstrates equal round robin
load scheduling while performing read-only workload. The number of keys at the figure
was 9.

• Sharded MULTI-GET are split in multiple MULTI-GETS end sent to all servers. The
objective of splitting is to split a large requests as equally as possible and provide the
similar load to servers. After sending all the requests to server/servers, Workers wait
until replies from all servers have been received. After reception of all replies, further
processing and assembling is performed. As a result a single message is assembled where
the ordering is the same as the client requested. Afterwards the data is finally being
forwarded back to the client as a single message.

Name: IVAN TISHCHENKO Legi: 17-945-536 4

(a) Single GET load distribution (b) Non sharded multi GET load distribution

Figure 2: Read only workload distribution

1.3 Instrumentation

Because of the multi-threaded nature of the application statistics are collected per Worker
object. Concretely, each of Workers contains its own copy of the Statistics object as a field. The
statistics are being gathered with the use of the Timer Task, which executes over a specified
period of time. The statistics from this moment are being logged at the statistics.log. On
middle-ware’s shutdown there is a shutdown hook being executed, which aggregates all of the
statistics from the log. Finally the aggregated statistics are printed to standard output stream.
Statistics collected during instrumentation:

• Average throughput (ops/sec)

• Average response time (msec)

• Average queue length

• Average wait time in queue (msec)

• Average service time (msec)

• Number of SET

• Number of GET

• Number of MULTI GET

• Arrival rates

• Server loads

• Histogram response times (0.1 msec step)

For the modeling section the values of the arrival rates were heavily used. The arrival rates
unlike other statistics are collected in the NetworkThreads. Each section there is a measurement
of arriving jobs conducted. Afterwards the values are added to the lists. At the end of operation
the middlewares outputs this list, from which the arrival rates for modeling are computed. The
server load values for used to generate the histograms of equal server load distribution.

2 Baseline without Middleware (75 pts)

This section describes the baseline experiment with servers and client machines only and no mid-
dleware. The main purpose of the experiments is to demonstrates performance characteristics
of the memtier clients and memcached servers before adding the middleware component.

The range of the victual clients is 1 to 33 with step 4. All experiments were repeated 3 times,
each repletion was 1 minute long. The error bars represent the errors between the repetitions.

Name: IVAN TISHCHENKO Legi: 17-945-536 5

2.1 One Server

For both read-only and write-only workloads the throughput and the response time were mea-
sured as a function of NumClients and plotted later.

For this experiment 3 load generating machines of type A2 were used, containing one memtier
(CT=2) each, the number of virtual clients (VC) per memtier was varied from 1 to 33 using
step of 4 VC.

Ping analysis was performed before running the experiments to estimate the allocation of
client machines in relation to server by the Azure environment. The client machines are located
close to each other in terms of ping. However based on the ping we could deduce that first
machine is located slightly closer to the server. That fact that machines are located closely to
one another positively affects the experiment resulting in very low error in aggregation between
the machines.

Client machine Average ping time (msec)
tivanforaslvms1 1.187
tivanforaslvms2 1.389
tivanforaslvms3 1.356

After Performing write only workload the following figures for throughput and response time
were acquired which are depicted at Figure 3.

(a) SET only aggregated throughput (b) SET only aggregated response time

Figure 3: Throughput and response time write only workload

From the figure we can see that the overall throughput grows with the number of clients
and reaches the mark of over 25680 ops/sec. Before 150 NumClients clients mark server is
under saturated. After that mark server is saturated, the throughput curve stays flat. The
response time grows linearly with the increase of NumClients and the throughput peaks at 198
NumClients with the value 25683.41 ops/sec and 7.7 msec. Response time and throughput are
positively correlated. Overall the figures dervived from the interactive law match the measured
ones, for instance let us take the value of response time at 174 clients, which is 6.77. Using the
interactive law X = N

R+Z we derive the value of 25701 ops/sec, which similar to the measured
value of 25633 ops/sec.

Afterwards the GET only experiment was performed which depicted at Figure 4.

Name: IVAN TISHCHENKO Legi: 17-945-536 6

(a) GET only aggregated throughput (b) GET only aggregated response time

Figure 4: Throughput and response time read only workload

The throughput rose rapidly after 30 clients. The server is saturated after that point.
Overall throughput which reaches its maximum of 11277 ops/sec at 54. is less than in the SET
only case. The response time which is 17 msec at 198 NumClients is significantly larger than
in the SET only workload. The derived values for interactive law match the measurements, for
instance 11255 ops/sec obtained from derivation versus 11250 ops/sec from measurements at
the mark of 174 clients.

2.1.1 Explanation

After obtaining the results we could observe that the overall throughput of read only workload
was significantly less than the throughput of the write only workload. The same tendency is
observer with the response time where the performance of read only workload was significantly
worse.

The difference between read only and write only results may be explained by the fact that
the responses of read only workload’s request are generally much larger in terms of size of the
payload than during the write only workload. Therefore the throughput is less in the situation
where the size of the data being manipulated and transfered is larger, which causes overhead
for the network. Response time also increases if the size of the data transfered increases.

Relatively low number of the throughput of read only workload in the first configuration
could be explained by looking at the network load at the second peak at Figure 7. The network
load grows very rapidly compared to other experiments and stays flat until the end of the
experiment. This issue results in a plot which also reaches maximum throughput rapidly and
stays flat for the most part.

The value from 30 clients does not seem to grow more because it is basically limited by the
network factor, this is supported by the fact that network plateaued at the value and did not
grow at all (Figure 7, second peek corresponds to the current experiment). This behavior could
be explained by Azures limitations for network upload speed.

2.2 Two Servers

For the read-only and write-only workloads the throughput and response time were measured
as a function of NumClients and plotted later.

Name: IVAN TISHCHENKO Legi: 17-945-536 7

For this experiment 1 machine of type A2 was used, with one memtier (CT=1) connected to
each memcached instance (two memcache instances in total). Number of virtual clients (VC)
per memtier thread was varied from 1 to 33 with step 4.

The results of write only experiment are depicted at Figure 5

(a) SET only aggregated throughput (b) SET only aggregated response time

Figure 5: Throughput and response time write only workload

With two client machines the maximum throughput gets to the mark of 22300 ops/sec. At
42 clients the servers reach the saturation point, after that point throughput does not increase
and the curve stays flat. The repose time peaks at 3 msecs at 66 NumClients. One could notice
more rapid form of growth of response time compared to the previous configuration. The error
bars have slightly increased compared to the previous experiment, however overall the error still
remains rather minor.

(a) GET only aggregated throughput (b) GET only aggregated response time

Figure 6: Throughput and response time read only workload

Afterwards the read only workload has been performed which is illustrated on Figure 6.
Overall the results are similar to the write only workload. The maximum value of throughput is
reached at 66 NumClients at the 22305 opes/sec mark, the response time peaks at 66 NumClients
with the value of 3 msecs. From the value of 50 NumClients the curve stays flat meaning that

Name: IVAN TISHCHENKO Legi: 17-945-536 8

the severs are saturated. The error bars are less than in write only workload.

2.2.1 Explanation

Comparing the results to the previous section’s experiment the maximum throughput at write
only workload is slightly lower than in the previous configuration which had more client machines
but with only one memtier instance. In contrast the throughput for read only workload is larger
in current experiment compared to the previous section.

When it comes to write only workloads of both configurations the saturation point for write
only workload at the configurations with 2 memtier instances and one machine happened much
earlier than at the one with 3 machines but 1 memtier instance. The reason for this is the number
of servers and the number of client machines. At configuration number one the requests are
sent to only one single server, however they are sent from completely different machines with
different ping times to the servers, which means there would be network delays because of all the
traffic, this allows even one memcached server to process jobs more effectively and not saturated
so fast, concretely to process some jobs sent from some machine while the jobs from the other
machine are still being sent and likely delayed at the network.

In contrast to second configuration the jobs are sent from two memtier instances but from
the same machine, which means ping times are the same. The jobs are not slowed down by the
network as much as during the previous case, although there are even 2 servers now.

When it comes to read only workload, as opposed to the read only experiment for the
previous section, current configuration grows smoother. The saturation points occurs later.
This behavior could be explained by analyzing the network load (figure 7), concretely one could
see that the network load does grow smoother as opposed to rapid increase as in the previous
configuration.

2.3 Summary

Based on the experiments conducted above the following table was acquired

Maximum throughput of different VMs.
Read-only
workload

Write-only
workload

Configuration gives max. throughput

One memcached server 11276 25683 Reads 78 NumClients, writes 198 NumClients

One load generating VM 22302 22306 Reads 66 NumClients, writes 58 NumClients

In terms of write only workload the configuration which gave the maximum throughput is the
configuration from the first experiment, specifically the one with 1 server, three machines, 1
memtier instance with 2 threads, however this figure was recorded at the larger number of
NumClients point. When it comes to read only workload the second configuration with even
smaller value of NumClients demonstrated significantly better results of throughput compared
to the first configuration.

We could observe than the difference of throughput figures of write only experiment is
significantly less than the difference of figures for read-only workload. This behavior is explained
by the fact that read only workload puts a lot of pressure on the network out at the server side
(Figure 7), because of this there was some limitation from network side which did not allow
throughput to reach higher mark. In contrast, write only workload does not put a lot of pressure
on the server network output.

Name: IVAN TISHCHENKO Legi: 17-945-536 9

(a) Server’s CPU load (b) Server’s network upload load

Figure 7: Load of the components for baseline without middleware

To better interpret the final results one should consider the component’s utilization. The
CPU and Network load are plotted on Figure 7 which is based on the metrics provided by
Microsoft Azure Metrics capabilities. At both graphs one could see four peaks which represent
our four experiments: SETs with the first configuration, GETs with the first configuration,
SETs with the second configuration, GETs with the second configuration. In general GET only
workloads for both configurations were heavier on the network than the experiments for SET
only workload.

Overall there is very little of an error and noise because the results across the repetitions
and machines vary insignificantly, because the experiment was performed during nighttime when
Azure environment produces the least noise.

3 Baseline with Middleware (90 pts)

This section describes the set of experiments where 1 load generator A2 and 1 server A1 were
used. The throughput and response times where measured as a function of the number of
clients. Scaling of the virtual clients is performed as in the last sections. Provided plots of
both throughput and response time are based on the data measured on the middleware through
instrumentation. All experiments were repeated 3 times, each repletion was 1 minute long. The
error bars represent the errors between the repetitions.

3.1 One Middleware

This configuration used one load generator A2 (one instance of memtier with CT=2), single
middleware A4 and 1 server A1. The read-only and a write-only workload were performed with
varying VC setting from 1 to 33 with step 4.

The experiment was repeated for all worker threads configurations.

Name: IVAN TISHCHENKO Legi: 17-945-536 10

(a) SET only aggregated throughput (b) SET only aggregated response time

Figure 8: Throughput and response time, one middleware configuration

Figure 8 demonstrates the results of write only workload with single middleware. For all
4 worker threads configurations the throughput as well as the response time increase. The
configuration with 8 worker threads saturates at 18 clients, sooner than all other configurations.
The configurations with 32 and 64 worker threads deliver the best performance in terms of
throughput, however the configuration with 64 worker threads demonstrates better performance
in terms of response time.

When it comes to interactive law verification we could compute the value of response time
using the equation X = N

R+Z . Let us take point of 66 clients, 16 worker threads. We have 7.27
msec for response time and 6746.67 ops/sec for throughout. Using the equation we derive the
value of 6877 ops/sec. In general the derived values matched the measurements, higher values
of derived figures are explained by zero think time assumption.

(a) GET only aggregated throughput (b) GET only aggregated response time

Figure 9: Throughput and response time, one middleware configuration

Followed by the write only experiment, the read only load experiment was performed. From
Figure 9 experiment one could notice that 64 worker threads configuration demonstrated the
best performance both in terms of throughput and response time. The configuration peaks at
66 clients. On the other hand the configuration with 8 threads showed the worst performance

Name: IVAN TISHCHENKO Legi: 17-945-536 11

both in regards of throughput and response time alike. The configuration is saturated after
18 clients the throughput curve stays flat and the response time graph has a knee at the same
point.

Overall, we can observe that the interactive law holds. Let us take 50 clients for 8 threads.
The derived value is 5442 ops/sec, the measured one is 5987.33. In general the values are
close, the discrepancy is explained by the zero think time assumption. The discrepancy for
more worker threads configurations is larger because the think time increases with more worker
threads, however we still assume think time as constant, specifically zero think time assumption.

3.1.1 Explanation

After analyzing the results of the experiment, one could state that the system demonstrates
better performance with the rise of worker threads number. Comparing the write only and read
only workload, the latter one demonstrated higher overall throughput for all worker threads
configurations and lower response times as well.

(a) Queue length (b) Service time

Figure 10: Measurements of internal system components, single middleware, write only workload

During the write only experiment the throughput at 64 worker thread configuration kept
rising even after the mark of 66 clients, therefore the saturation point is not visible in this range,
and it likely appears at the higher mark. The absence of saturation point could be confirmed
by the queues length values displayed at Figure 10. Even at the mark of 66 clients no knee was
observed. The saturation point of 32 worker threads appears to be at 58 clients, we can observe
the knee at the response time graph as well as at the queue length graphs. The saturation point
for 16 worker threads is located at the mark of 34 clients, we can see that plot for throughput
plateaus at that point, the response time has a knee at the point, so does the queuing time.
The configurations with 8 worker threads saturated as the earliest, specifically the mark of 18
clients is the saturation point, we can see that throughput stayed flat at that point, response
time plot contains a knee and the queue lengths changed the order of growth at that point.

Name: IVAN TISHCHENKO Legi: 17-945-536 12

(a) Queue length (b) Service time

Figure 11: Measurements of internal system components, single middleware, read only workload

When it comes to read only workload the two best configurations were the ones with 32 and
64 clients. The saturation point for 32 workers threads appears at the mark of 58 clients. The
saturation point for 64 workers threads is again not observed in the range. From the throughput
plot 9 we see that both plateau after that point of 58 clients, the response times rise up as well
as the queue sizes. The configuration with 16 threads saturate significantly earlier at the mark
of 34 clients. Finally, the configuration with 8 threads saturated at the same point as during
the write only workload, specifically at 18 clients.

Speaking of internal components, the overall trend is that with the increase of worker threads
queue length become less. The order of queue growth is more rapid with lower number of
workers. This has an effect on saturation points, concretely the less worker threads are in
middleware the earlier the saturation happens. Another important observation is that more
worker threads cause service times to go up, which is explained by the fact that more worker
threads means more pressure for the servers. The order of growth increases on curves with more
worker threads.

3.2 Two Middlewares

This configuration used one load generator A2 (two instances of memtier with CT=1), two
middlewares A4 and 1 server A1. The read-only and a write-only workload were performed
with varying VC setting from 1 to 33 with step 4.

The experiment was repeated for all worker threads configurations.
Figure 12 illustrates the result of the write only experiment with two middlewares. The

configuration with 64 and 32 worker threads deliver the best performance both in terms of
throughput and response time, in contrast the configuration with 8 delivers the worst perfor-
mance. We can observe the same trend that some curves do not plateau in the proposed range
as well as that some response time curves do not contain knees.

Name: IVAN TISHCHENKO Legi: 17-945-536 13

(a) SET only aggregated throughput (b) SET only aggregated response time

Figure 12: Throughput and response time, two middlewares configuration

(a) GET only aggregated throughput (b) GET only aggregated response time

Figure 13: Throughput and response time, two middlewares configuration

Figure 13 shows the result of the read only experiment with two middlewares. The through-
put and response times curves of different configurations are located closer to each other than
compared to the previous experiment. Another thing to notice is that the throughput curves
look more saturated compared to the write only workload. This behavior is going to be explained
in the later section.

3.2.1 Explanation

From the write only experiment we can see that the configuration that achieves the earliest
saturation is the one with 8 worker threads. This happens at the mark of 42 clients, much later
than during the previous section. We can see the plateau of throughput after that point as well
we can see the knee at the response time at the mark of 42 clients (Figure 12), queues start to
grow rapidly after 42.

However if one would consider other worker threads configuration with more threads, one
could see the trend that there are no signs of reaching of saturation, especially at configurations

Name: IVAN TISHCHENKO Legi: 17-945-536 14

of 32 and 64 threads. Furthermore, there is an interesting tendency of decrease of service times
with the increase of worker threads. The queue lengths are fairly small even at large numbers
of clients for the configurations with 32 and 64 worker threads. This kind of behavior differs
from the behavior of previous configuration. This is a strong indication that middle-ware is not
the bottleneck in this setting for 16, 32 and 64 threads. Therefore we need to add the second
client to explore the performance in more detail.

(a) Queue length (b) Service time

Figure 14: Internal system components, double middleware, write only workload

After performing the experiment for the read only workload there was a tendency observed
that the saturation is more distinct compared to the write only workload. We can see that the
throughput curves for all worker thread configurations plateau, which is an indication that an
increase in worker threads does not introduce a significant speedup as it was during the write
only workload.

We can see that for the configuration with 8 threads, which was still the fastest to saturate,
the saturation point lies at 34 clients, because throughput plateaus after that point and there
are knees at response time plots and at the queues lengths plots as well. Figure 15 demonstrates
the state of components. Notably, for this configuration we can see that service time did not
increase much with the rise of clients which means middlewares was actually the bottleneck. In
contrasts, the configuration with more threads had almost similar performance as we have seen
it before, we can see that the service times went up with the increase of clients, however the
queues sizes were relatively low. This indicates that memcached servers were the bottlenecks, at
configurations with 32 and 64 threads. With 16 threads we observer similar behavior two both
highest and lowest threads configuration, which indicates that there is a mixture of bottleneck
from middleware and servers for that configuration.

Different kind of behavior of the experiment in this section is explained by the fact that we
use two middlewares compared to the single one in the previous section. Double middleware
means more capacity for the arriving jobs because there two queues in this setting. This means
the queuing size would decrease compared to the case with one middleware. Another point to
consider is the fact that two middlewares put significantly more load on the servers, compared
to the single middleware setting.

Name: IVAN TISHCHENKO Legi: 17-945-536 15

(a) Queue length (b) Service time

Figure 15: Internal system components, double middleware, read only workload

Overall, the experiments demonstrated that the system is not saturated, as it was previ-
ously mentioned. Therefore it makes sense to increase the load by performing and additional
experiments with client machines increased to two instances of A2.

Figure 16 demonstrates the behavior of the system during the write only workload. Expect-
edly, with more clients the overall throughput rises and reaches the mark over 16000 req/sec.
However the throughput still keeps rising and one could not observe the saturation point in the
range.

(a) SET only aggregated throughput (b) SET only aggregated response time

Figure 16: Expanded experiment, double middleware configuration, read only workload

Name: IVAN TISHCHENKO Legi: 17-945-536 16

(a) GET only aggregated throughput (b) GET only aggregated response time

Figure 17: Expanded experiment, double middleware configuration, read only workload, addi-
tional client machine

Figure 17 shows the results of the system during the read only workload. The throughput
only reaches 11000 at this time because the proper population has been performed. The system
is saturated after 36 clients, the throughput curve is flat after that mark and there is a knee
at the response time plot. The behavior of the curve reminds us about the trend in read only
baseline experiment, where the network limited the growth.

3.3 Summary

Based on the experiments data the following table was produced:

Maximum throughput for one middleware.
Throughput
(ops/sec)

Response
time (msec)

Average
time in
queue
(msec)

Miss rate

Reads: Measured on middleware 9596.67 3.46 1.01 0.00 %

Reads: Measured on clients 9788.97 6.73 n/a 0.00 %

Writes: Measured on middleware 8424.67 4.51 1.25 n/a

Writes: Measured on clients 8596.35 7.72 n/a n/a

Maximum throughput for two middlewares.
Throughput
(ops/sec)

Response
time (msec)

Average
time in
queue
(msec)

Miss rate

Reads: Measured on middleware 10882.66 3.56 0.55 0.00 %

Reads: Measured on clients 11093.17 5.96 n/a 0.00 %

Writes: Measured on middleware 11661.66 2.81 0.60 n/a

Writes: Measured on clients 11871.52 5.55 n/a n/a

Overall, while comparing the values of throughput for the one and two middleware config-
urations one could notice a slight discrepancy between the values measured on the client and

Name: IVAN TISHCHENKO Legi: 17-945-536 17

the middleware. This can be explained by the fact that the middlewares are started slightly
earlier, which results in zero requests measured, which in return results in slightly lower value
of throughput. Response time measured on the middleware is lower that the one measured on
the client due to the fact that the response time is measured as the difference of time arriving
to the system and time when the job left the system, without taking in regard the network
transfer time which is impossible to measure on the middleware. This results in larger response
time values when measuring on clients.

The single middleware configuration gives larger figures in terms of both throughput and
response time for read only workload than for write only workload. In contrast to the exper-
iment without middle-ware where there was a significant difference of throughput figures of
two type of workloads for the one server configuration and very similar figures with one load
generator configuration. This is explained by the introduction of middleware, which balances
the performance of different types of workloads. The overall throughput figures are lower than
in the case with no middleware, because the bottleneck in form of middleware was introduced.
The read workload gave better throughput and response time results, with less queuing in the
system.

The double middleware configuration produced higher throughput figures and lower response
time figures in overall results. This could be explained by the fact of introduction of the second
middleware component, which doubled the amount of parallelism, which in return allowed more
jobs going through the system to be processed, which caused throughput figures to rise and
response times to lower. The queuing time has also decreased compared to previous configura-
tion because there are now more worker threads which can take the jobs from the queue, which
obviously reduces both the times in queue and queue sizes.

The overall trend is that the difference of performance between read only and write only
workload has decreased as compared to the experiment without the middleware, which is as
mentioned earlier can be explain by introduction of the middleware component. In general, the
throughput is lower than in the experiments prior to middleware introduction, which explained
by the fact that all requests have to go through one common single component, which slows
down the response time (the job has to wait in queue, limited amount of parallelism).

4 Throughput for Writes (90 pts)

4.1 Full System

The purpose of this section is to analyze the performance of the full system using write only
workload. Three client machines of type A2 were connected to two middlewares of type A4,
which were connected with three servers of type A1. All experiments were repeated 3 times,
each repletion was 1 minute long. The error bars represent the errors between the repetitions.

Name: IVAN TISHCHENKO Legi: 17-945-536 18

(a) Aggregated throughput (b) Aggregated response time

Figure 18: Throughput and response time, full system, throughput for writes experiment

Figure 18 demonstrates the throughput and response time measurements after performing
the throughput for writes experiment.

Overall, the tendency is that with the increase of number of workers threads the throughput
increases and the response time decreases. The characteristics of both throughput and response
time do not vary significantly no matter of configuration before the reach mark of 30 clients.
After that point the configurations which offer more parallelism start to deliver higher through-
put. After the mark of 54 clients configurations with 32 and 64 threads start to deliver best
performance and at the mark of 126 clients the configuration with the most threads outperforms
the other configurations.

The configuration with 8 worker threads demonstrated the worst performance both in terms
of throughput and response time. The system begins to saturate at the mark of 30 clients, the
curve stays flat and does not increase after this value, one could also notice a knee at the same
mark ob the response time.

The configuration with 16 worker threads follows the same pattern as the previous config-
uration. The system starts to saturate at the mark of 54 clients, the throughput remains the
same after this point, there is a jump on response plot at the same mark.

The setting with 32 worker has shown significantly better performance after 54 clients, out-
performing the previous configurations. The system begins to saturate at 78 clients. Similarly,
we observe the same kind of growth with the 64 workers threads configuration. The configura-
tions outperforms the 32 threads setting, delivering very similar figures in terms of throughput,
however with the noticeably better results in response time, visible from the mark of 102 clients.

4.1.1 Explanation

To better understand the results obtained in the previous subsection, let us consider other
characteristics other than response time and throughput. Figure 19 contains the sizes of the
queue and service times, both plotted as a function of number of clients.

The throughput figures are lower and the response time is higher compared during the
baseline experiment for write only workload, this is due to the fact that we use three servers
now. Larger number of servers increases the service time as it could be seen from the service
time plot, this is because the data has to be replicated to all three servers during the write only
workload, which increases the service time, which in respect will increase the response time and
decrease the throughput.

Name: IVAN TISHCHENKO Legi: 17-945-536 19

From the service time plot, one could notice that service times are correlated with the
number of workers, the more workers threads are in the system, the higher the service times
are. This tendency can be explained by the fact that the degree of parallelism rises with the
increase of worker of threads. More threads means more generated load for the memcached
servers. More jobs the servers obtain, the more time it takes for the server to respond to the
middleware, which causes the service time to increase. Noticeably, the noise increases with the
number of worker threads increased, this could be explained by the fact that the more worker
threads one has the more measurement discrepancies are introduced.

When it comes to queue length, the number of jobs in the queue curves are negatively
correlated with the number of worker threads. With the increase of number of worker threads
in the middleware, the number of jobs in the queue drops down. Namely at 8 worker threads
the number of jobs in the queue goes over 160, in contrast the configuration with the most
amount of threads only goes over 40 jobs in the queue as well as it does maintain the lower
order of growth.

The behavior of the queues is correlated with the saturation points. In other words, there
is a knee visible at the curves of the queue length plot. For instance at the saturation point
of 8 worker threads configuration, one could observe that the order of growth of the queue
length changes rapidly at the mark of 30 clients. The same behavior is observed at 16 clients
configuration, at the saturation point of 54, there is a knee observable on the plot. The same
behavior is observed at other configurations such as 32 and 64 worker threads configurations,
the jump for 32 threads as at 78, and for 64 threads it is located at 150 clients. Noticeably the
order of function growth becomes the same after each curve goes over its saturation mark.

Overall, we can see that queues sizes keep increasing rapidly with more additional clients.
The service times increase with more workers. This is an indication that middleware is lim-
iting the throughput growth, this behavior was already observed during baseline with single
middleware experiment.

(a) Queue length (b) Service time

Figure 19: Measurements of internal system components

4.1.2 Determining the best configuration

Previously we have already discovered the performance of the system with 1 client and 1 server
and had an opportunity to reason about the best configurations. Having performed the exper-
iment with the full system one could select the configuration of worker threads which delivers

Name: IVAN TISHCHENKO Legi: 17-945-536 20

the highest throughput. The configuration selected in this section would be used in further
experiments as well as in the section on modeling.

From the previous section we could observe that there are two configurations which have
performed significantly better than the others. These two configurations are 32 and 64 worker
threads (Figure 20). Before he mark of 30 clients these two configurations perform with no
difference in regards with both throughput and response time.

In general, at the period from 78 to 126 clients the configuration with 32 threads actually
performs better than the configuration with more threads, this could be explained by the fact
that at this number of clients more threads cause overhead, rather than benefit and make the
computation faster. In other words the number of threads can be redundant in some cases, so
the there is so called competition between the threads instead of expected performance speedup.

Passing the mark of 126 clients two configurations give almost identical results in terms of
throughput. However, after considering the graphs for the response time, one could conclude
that the configuration with 64 workers threads delivers similar throughput but at better numbers
in terms of response time. Two graphs of response time start to diverge at the point of 102,
the line for 32 worker threads starts to change the order of growth, however the version with
64 worker threads remains the same order of growth, because of more parallelism available.
Overall, the configuration with 64 worker threads provides better results in terms of response
on the whole range of clients.

All things considered, the configuration with the most amount of worker threads namely the
configuration with 64 threads has provided the best overall performance. Thus the configuration
with 64 worker threads would be interchangeably used as the maximum throughput configu-
ration. Further experiments as well the section on modeling will fix the number of threads at
64.

(a) Throughput (b) Response time

Figure 20: Best configuration selection

4.2 Summary

After conducting the experiments described in the previous sections the following table was
constructed based on the data acquired. The entries correspond to the maximum throughput
point for each corresponding configuration.

Name: IVAN TISHCHENKO Legi: 17-945-536 21

Maximum throughput for the full system
WT=8 WT=16 WT=32 WT=64

Throughput (Middleware) (ops/sec) 5347.67 6569.67 8177.33 8221.00

Throughput (Derived from MW response time) (ops/sec) 6125.82 7367.19 9222.84 10152.23

Throughput (Client) (ops/sec) 5423.33 6598.37 8053.64 8204.04

Average time in queue (msec) 9.93 14.98 19.70 7.46

Average length of queue 14.00 27.33 52.33 23.17

Average time waiting for memcached (msec) 2.54 4.02 4.52 6.43

Overall, there is a tendency of throughput increases between maximum throughput points of
all configuration, when measured on the middleware. The same tendency is observed when per-
forming the same measurements on the client. There is a slight discrepancy between throughput
results measured on the middleware and the throughput measured on the client. The figures
on the middleware are slightly lower for all configurations than the ones from the client, this
behavior could be explained by the fact that the middleware has been started slightly earlier
before memtier clients. Because of the earlier start middleware started recording the arrivals of
the jobs before any actual jobs were generated, that obviously caused zero jobs arrival measured
at the statistics logs, which later were used for plotting as well as for the content of the tables.

The second entry of the table, which is throughput derived from the response time measured
at the middleware used the interactive law equation X = N

R+Z . The overall trend continues
to hold, the throughput increases with the increase of worker threads. In general, the figures
are higher than throughput measured at the client and directly at middleware. This could
be explained by the fact that the response time measured on the middleware is not the equal
values to the response time measured on the client. The way the response time measured on the
middleware is time when the job was received from the socket minus the time the job was sent
back to the client. This value would always inevitably be less than the value measured on the
client, because it does not take in regards the network transfer time, which is never a constant
and varies a lot because of the network environment factors. Considering the equation, because
of the response time values being lower, the throughput becomes larger compared to the ones
measured on the client and directly on the middleware.

Another point to consider is the tendency of increasing discrepancies in the throughput
values measurements between the throughput derived from the response time and the values
measured directly. In other words, the more worker threads we introduce the more difference
we obtain in the derived values and the value measured directly. This could be explained by the
fact that with the increase of number of worker threads more network overhead arises, because
obviously more threads generate greater load. Due to more threads it takes more time to transfer
the response back to client. The so called service times increase as it was showed at Figure
19. All things considered, due to the reason that response time measured on the middleware
does not include this transfer time, as it was described earlier, the difference between directly
measured throughput and throughput derived from response time rises.

Noticeably, the time in queue in the table does increase until the 32 worker threads configu-
ration and reaches the minimum at 64 worker threads. This behavior is explained by the reason
that maximum throughput configurations do not happen at the same mark of clients. Namely
the maximum throughput for 32 and 64 worker threads happens at 33 clients, in contrast to 16
worker threads where the maximum is at the mark of 17 clients as well in the case with 8 worker
threads where the maximum is observed at 9 clients. The time spent in queue is correlated with
the increase of of virtual clients.

Considered this information, it particularly makes sense to look at the configurations of 32
and 64 threads which have the maximum at the same point at 33 clients. The queuing time

Name: IVAN TISHCHENKO Legi: 17-945-536 22

for the 64 workers is 2.64 times less, which is explained by the fact that there are more threads
performing the tasks, which means there are more jobs that could be taken from the queue.
This causes the job to spend less time in the queue on average. The value of time in queue for
8 workers is less than with the configuration with 16 workers because there are only 9 clients
compared to 17 clients at the corresponding maximums. Less clients means there would be less
jobs generates, which in return means the queues would be shorter and the average queue time
would be less. The same pattern is observed while comparing 16 and 32 threads configurations,
because the maximum throughput client number is 17 and 33 respectively.

The same observation is noticeable in the queue length values as it was the case with queuing
time. These two metrics are correlated because less jobs in the queue causes the requests to be
dequeued earlier and spend less time in the queue. This is again explained by the fact that not
all maximum throughput configurations were reached at the same mark of clients. In general,
less clients will inevitably mean shorter queues and less of queuing time.

5 Gets and Multi-gets (90 pts)

The purpose of this section is to explore the behavior of the system during the multi-get work-
load. Further the behavior of two modes, namely sharded and non sharded were compared
and analyzed together. For these experiments there were used three clients of type A2, two
A4 for middlewares and three A1 for servers. All of the experiments were conducted using the
maximum throughput configuration, which is 64 worker threads as determined earlier.

It is important to mention that the number of keys in a multi-get request was fixed for all
of the experiments in the section. All of the memtier command have the form of –ratio 1:i,
where i would vary in the key range which is 1, 3, 6 and 9. In other words one will not receive
a request with fewer number of keys than specified.

5.1 Sharded Case

This subsection describes the multi-gets experiment with keys in range 1, 3, 6 and 9 while
the sharding flag was enabled on the middleware application. All experiments were repeated
3 times, each repletion was 1 minute long. The error bars represent the errors between the
repetitions.

(a) Response time (b) Response time percentiles

Figure 21: Response times, sharded case

Name: IVAN TISHCHENKO Legi: 17-945-536 23

Figure 21 demonstrates the results of responses time after performing the experiment with
sharding. The main tendency of the plot is the correlation of the response time and the key
size of the multi-get. The response time increases the more keys size becomes. However there
variation of response time is not large and lies in the range of 3 msec to 3.75 msec.

When it comes to percentile data, one could see similar kind of growth. 50% of request
were completed under 3 msec, 75% were completed in less than 4 msec. The upper limit was
at around 10 msec, under which the 99% percentile is located.

5.1.1 Explanation

The linear increase of the response time with the growth of the multi-get key size can be ex-
plained by the fact that the size of the response increases as the keysize grows. This means more
data is being transfered back from the server to the middleware as well more data transfered
between middleware and clients. This issue causes the service time go up as its depicted at
Figure 27. Along with more service time the queening time also increases as illustrated at 28.
These factors are positively correlated with response time, specifically they cause it to rise, as
we see at the response time graph. The growth of all these three functions remains very similar.

One more thing worth mentioning is the fact that the response time of 90th percentile at
the position of 1 multi get key is actually located higher that the one with 3 keys. This could
be explained by the fact of sharding, with only one key, which cannot be sharded between the
machines, this is why this example is located higher than the one with 3 keys, where sharding
is obviously takes place.

5.2 Non-sharded Case

This subsection describes the multi-gets experiment with keys in range 1, 3, 6 and 9 while the
sharding flag was disabled on the middleware application.

(a) Response time (b) Response time percentiles

Figure 22: Response times, non-sharded case

Figure 22 contains the response times as functions of the keysize. One could observe the
linear growth of the response time as in the case with sharding. The value range starts from
3 msec, which is slightly lower than during the sharded case, afterwards the response time
function continues to grow to reach the value slightly under 3.5 msec, which is lower than in
the sharded case.

Name: IVAN TISHCHENKO Legi: 17-945-536 24

Noticeably the percentiles for 25, 50, 75 percent remain the very little order of growth unlike
with the sharding case. The 99th percentile was located lower compared to the sharded case.

5.2.1 Explanation

The linear increase in response time as explained as previously, the increase in key size causes
the response data to enhance, which in return causes more overhead on the network. From the
Figure 27 we can observe that the service time rises with more multi-get keys, however with the
different rate of growth compared to the sharded case. So do the queuing times as illustrated
at Figure 28. These factors as mentioned previous are correlated with the rising response time.

Noticeably for 75% of requests the response time does not demonstrate large growth as
opposed wo sharding case where the growth was more visible. The 90th percentile at the non
sharded case has a minimum at 1 client as opposed to the same case on the plot for sharded
multigets. The same kind of reasoning as in the previous experiment is the explanation.

5.3 Histogram

For the case with 6 keys inside the multi-get, the following four histograms were constructed.
All of them serve as the representation of the response time distribution. The bucket size was
fixed at the value of 60 bins for all four histograms. The step size for all histograms is 0.1 msec.

The histograms from middlewares were produced from the instrumentation. On the other
hands the histograms for clients were generated from the data produced by the memtier client,
specifically memtier application produces the CDF of the response times, which can be easily
converted to the from of PDF, which exactly suitable for the histogram.

(a) Measured on middleware (b) Measured on client

Figure 23: Histogram of multigets response times distribution, non-sharded case

Figure 23 contains the distribution of response time during the non-sharded experiment.
Overall, both the histograms illustrate the same tendency and have the same shape. The main
thing to observe is the shift of the histogram of the client.

This behavior is explained by the fact that the response time measured on the middleware
does not include the network transfer time, which obviously cannot be measured from the
middleware, as it was explained in the previous sections. Because of this reason the histogram
from the clients looks like a shifted version of the histogram from the middleware. The shift is
equal to 1 msec, which represents the network transfer part.

Name: IVAN TISHCHENKO Legi: 17-945-536 25

Small bump from 0 to 1 at the middlewre histogram and from 1 to 2 at the client can be
explained by the fact of the mixed workload, which corresponds to the write only workload
prior to read only one.

Another thing to notice is the fact that the histogram from the middleware has narrower
shape compared to the one from the client. This could be explained by the averaging of the
response time between multiple worker threads, which makes the data to lie closer to the mean.
In contrast the client obtains more deviated results of the response time which contain more
outliers.

(a) Measured on middleware (b) Measured on client

Figure 24: Histogram of multigets response times distribution, sharded case

Figure 24 contains the histograms of the response time distribution during the sharded
experiment. Fist thing to notice, the response time diagram of the client is shifted to the right
compared to the one from the middleware histogram. The shift is due to the reason the response
time from the middleware does not include network delays.

The shift of the diagrams is more visible than during the non sharded case. More of a shift
could be explained by considering the figures of service time (figure 27). Overall the service
time for sharded case is higher than during the case with no sharding. This means it takes
servers longer to reply, which counts towards more delay to get the reply.

The client histogram again has wider shape than the one from the middleware due to the
same reason as during the non sharded case. Both histograms have a lot of outliers values,
which results in long tails of response times.

5.4 Summary

This section would analyze two modes in comparison to each other. Figure 25 demonstrates
the server load distribution for both modes. During the operation at both modes the servers
receive almost identical load of requests. One could observe that during the sharded mode the
servers receive approximately three times more requests, this is explained by sharding between
three servers.

Name: IVAN TISHCHENKO Legi: 17-945-536 26

(a) Sharded case (b) Non sharded case

Figure 25: Load distribution multi get, number of keys is 9

While performing the comparison between two modes it makes sense not only look at the
figures of response time, but also consider the figures of the throughput. Figure 26 demonstrates
the throughput as the function of multi-get key size.

Overall, the throughput for both cases starts to plummet for both sharded and non sharded
modes with the increase of multi-get key size. The maximum throughput for both modes was
recorded at 1 multi get key, in contrast the minimum is observed at 9 keys. The reason for this
behavior is the same as with the response time, more multi-get keys increase the service times,
which in return decreases the throughput.

The throughput figures at 1 multi-get key look the same for both modes, this is explained
by the fact that one key cannot be sharded, so two modes operate the same. However, when
we go further to 3 multi-get keys the throughput decreases more during the sharded case. This
is explained by the higher service time numbers (Figure 27), which means it takes longer time
for servers to reply, that in return causes lower throughput numbers. The same trend continues
over both sharded and non sharded curves until both reach the minimums of approximately
3250 and 3500 respectively. The figures of throughput demonstrate that both modes deliver
similar performance in terms of throughput with sharded case being slighlty behind.

When it comes to interactive law, let us take the point of 9 keys for both sharded and
non sharded mode, which have the values of throughput 3252.59 ops/sec and 3578.69 ops/sec
respectively. The derivation with the interactive’s law equation gives us 3243 ops/sec for sharded
case and 3539 ops/sec for non sharded case. Overall the derived values from the interactive law
match the measured ones.

Name: IVAN TISHCHENKO Legi: 17-945-536 27

(a) Sharded case (b) Non sharded case

Figure 26: Throughput as a function of key-size

Figure 27 contains the numbers of server services times for both modes. Overall the service
times for both modes do not have very large difference. This could be explained by the fact
that we only used 2 clients, which do not bring much divergence. However the service time
during the sharded case has a faster rate of growth and reaches higher mark of time. During
the 1 multi-get key point services times in both modes do not vary significantly, because there is
nothing to shard for the sharded mode. Going over further key size introduces more difference
between two modes. In general, sharded mode starts to take more time. The explanation for
this is that there are more request being sent to servers because of request splitting, this in
return puts more load on the servers, which causes the servers to take more time to reply.

(a) Sharded case (b) Non sharded case

Figure 27: Service time as a function of key-size

The times of waiting in the queue are shown at Figure 28. The most noticeable tendency is
that the queuing times are less on the full range of key-size for the non-sharded case. During
the nonsharded experiment the queuing times were close to 0.10 msec, in contrast to sharded
case which had more fluctuation from 0.10 msec to 0.14 msec.

Larger queuing times in sharded mode are determined by larger service times of the same
mode. In other words it takes longer for servers to reply, because of this the jobs are dequeued

Name: IVAN TISHCHENKO Legi: 17-945-536 28

slower by the worker threads, because we have a closed system, which caused higher figures of
queuing time in sharded mode. The same situation happens as with the service time happens
with queuing times, at 1 keys there is very little difference between the metrics of two modes,
because there is nothing to shard, however more and more divergence arises with the increase
of multi-get key size.

(a) Sharded case (b) Non sharded case

Figure 28: Queuing time as a function of key-size

In conclusion, two modes delivered very similar performance with the slight lead of non-
sharded case. The reason for this is that the experiment was conducted at relatively low
number of clients. Sharding is the technique which starts to pay back at the higher loads of
clients. Obviously at this point of clients, which was fixed at 2 clients, it is hard to adequately
compare two modes. Basically for 2 clients it is more preferable to use non sharded mode for
all values of keys from range 1, 3, 6, 9.

6 2K Analysis (90 pts)

During the experiments in previous sections we demonstrated how various component of differ-
ent configurations affect system’s performance, however the individual affects of these system
components have not been explored yet. The need for the experiment which would estimate
the components individually is inevitable while performing system’s analysis.

This section’s experiments purpose is to highlight how the proposed parameters of the system
namely: memcached servers, middlewares, worker threads inside middlewares affect our entire
system’s performance. The total number of proposed factors to test is 3, in addition to that
fact the proposed number of repetitions is 3, therefore we have to explore the factorial model
of 23r (the number of factors is k = 3, and the number of repetitions r = 3) which consists of
8 combinations of factors and takes in regard 3 repetitions. At the end, the analysis of these
factors on overall system’s performance based on the selected model will be performed.

To get the data 3 client machines of type A2 with 66 total virtual clients each were used
to generate the load. The measurement of both throughput and response time of the system
during the experiment were done as in the previous experiments, specifically the number of
repetitions was fixed to three. When it comes to get, the experiment did not make used of
multigets, but only concentrated on single GETS. Further, the following proposed parameters
were investigated:

Name: IVAN TISHCHENKO Legi: 17-945-536 29

• Memcached servers: 2 and 3

• Middlewares: 1 and 2

• Worker threads per MW: 8 and 32

The experiments were repeated for write only, read only, and finally write-read types of
workload. All the data which was used to determine the effect of the parameters on throughput
and response time was taken from the side of client. All experiments were repeated 3 times,
each repletion was 1 minute long.

Let A represent the first factor, namely the number of memcached servers, in analogy let’s
represent the second factor as B, which is the number of middlewares, finally let C represent
the work threads per MW factor. Next, we define three variables to encode our combinations
of factors as follows:

xA =

{
−1 2 memcahced servers

1 3 memcahced servers

xB =

{
−1 1 middleware component

1 2 middleware components

xC =

{
−1 8 worker threads

1 32 worker threads

Based on these variables we next define our nonlinear regression model as:

y = q0 + qAxA + qBxB + qCxC + qABxAxB + qACxAxC + qBCxBxC + qABCxAxBxC + e

Where qn correspond to affects of each individual factors, as well as the combined effects
of factors. The final term e represents the error term, since we consider the 2kr model, which
takes in regards the repetitions.

Considering the information described earlier we now need to determine the effect coeffi-
cients. This will be performed by constructing the sign table presented during the exercise.

Further when we have the corresponding table for each subsection we need to determine the
sum of the squared errors, notated as SSE. This value will be used later for estimation of error
variance:

SSE =

23∑
i=1

3∑
j=1

e2ij

In addition we need to determine the allocation of variation. Let the total variation be
calculated as:

SST = SSA+ SSB + SSC + SSAB + SSAC + SSBC + SSABC + SSE

Various components that make up our allocation of variation are computed with the following
equations:

SSA = 23 · 3 · q2A
SSB = 23 · 3 · q2B
SSC = 23 · 3 · q2C

SSAB = 23 · 3 · q2AB

SSAC = 23 · 3 · q2AC

SSBC = 23 · 3 · q2BC

SSABC = 23 · 3 · q2ABC

Name: IVAN TISHCHENKO Legi: 17-945-536 30

The final equation for SST now takes the form:

SST = 23 ·3 ·q2A +23 ·3 ·q2B +23 ·3 ·q2C +23 ·3 ·q2AB +23 ·3 ·q2AC +23 ·3 ·q2BC +23 ·3 ·q2ABC +
∑
i,j

e2ij

Once we have all of the above variables we can compute the variation of each parameter,
which would be used for the analysis. The variation of a factor could be obtained by dividing the
variation of specific factor by the total variation. In the following subsections the experiment
would be repeated for three types of workloads.

6.1 Write-only workload analysis

After performing the write only workload there results for throughput of three repetitions from
the memtier client were put into Table 1.

Exp. Effects Measured throughput Mean of yn Errors

i I A B C AB AC BC ABC yi3 yi1 yi2 yi ei1 ei2 ei3
1 1 -1 -1 -1 1 1 1 -1 2475 2604 2702 2594 118.67 -10.33 -108.33

2 1 -1 -1 1 1 -1 -1 1 5985 6001 5069 5685 -300.00 -316.00 616.00

3 1 -1 1 -1 -1 1 -1 1 4836 4644 4696 4725 -110.67 81.33 29.33

4 1 -1 1 1 -1 -1 1 -1 10446 10256 9908 10203 -242.67 -52.67 295.33

5 1 1 -1 -1 -1 -1 1 1 1933 1990 2035 1986 53.00 -4.00 -49.00

6 1 1 -1 1 -1 1 -1 -1 4513 4457 4433 4468 -45.33 10.67 34.67

7 1 1 1 -1 1 -1 -1 -1 3700 3742 3711 3718 17.67 -24.33 6.67

8 1 1 1 1 1 1 1 1 8462 8504 8222 8396 -66.00 -108.00 174.00

Table 1: Factorial experiment for throughput, write-only workload

Table 2 contains the results of response time from the same experiment.

Exp. Effects Response time Mean of yn Errors

i I A B C AB AC BC ABC yi3 yi1 yi2 yi ei1 ei2 ei3
1 1 -1 -1 -1 1 1 1 -1 77 73 70 73 -3.67 0.33 3.33

2 1 -1 -1 1 1 -1 -1 1 31 32 37 33 2.33 1.33 -3.67

3 1 -1 1 -1 -1 1 -1 1 40 42 41 41 1.00 -1.00 0.00

4 1 -1 1 1 -1 -1 1 -1 18 18 19 18 0.33 0.33 -0.67

5 1 1 -1 -1 -1 -1 1 1 99 96 93 96 -3.00 0.00 3.00

6 1 1 -1 1 -1 1 -1 -1 42 42 43 42 0.33 0.33 -0.67

7 1 1 1 -1 1 -1 -1 -1 53 51 52 52 -1.00 1.00 0.00

8 1 1 1 1 1 1 1 1 22 22 23 22 0.33 0.33 -0.67

Table 2: Factorial experiment for response time, write-only workload

Name: IVAN TISHCHENKO Legi: 17-945-536 31

Throughput analysis Response time analysis

Parameter Mean estimate Variation (%) Mean estimate Variation %

q0 5221.83 - 47.33 -

qA -580 4.82% 5.83 5.65%

qB 1538.75 33.93% -13.92 32.17%

qC 1966.17 55.39% -18.25 55.32%

qAB -123.75 0.22% -2.08 0.72%

qAC -176.17 0.44% -2.58 1.11%

qBC 572.92 4.70% 5.17 4.43%

qABC -23.75 0.01% 0.83 0.12%

Table 3: Allocation of variation, write-only workload

The results of variation of each factor were put in the Table 3. From the table we see
that the average throughput is 5221.83 ops/sec. The throughput is mostly affected by the
value of number of worker threads inside the middleware, which is at 55.39% percent. This
behavior is confirmed by the baseline experiment, where we saw significant performance jump
with the addition of more worker threads. The second largest factor in terms of variation is
the number of middlewares, which contributed to 34.1% of throughput variation. Number of
servers and number of middlewares combined with worker threads number introduced similar
minor variations of 4.7 % and 4.8% respectively.

Average response time was 47.33 msec. The figures for the response demonstrate the same
tendency as with throughput, with the number of workers threads contributing the most to the
variation at 55.32 %. The second largest factor is number of middlewares, which is 32.3 %.
Number of servers and interactive effect of middlewares number and workers threads number
made rather small contribution to variation art 5.7% and 4.5% respectively.

(a) Throughput (b) Response time

Figure 29: Variation chart, write only workload

6.2 Read-only workload analysis

After performing the read only workload there results for throughput of three repetitions from
the memtier client were put into Table 4.

Name: IVAN TISHCHENKO Legi: 17-945-536 32

Exp. Effects Measured throughput Mean of yn Errors

i I A B C AB AC BC ABC yi3 yi1 yi2 yi ei1 ei2 ei3
1 1 -1 -1 -1 1 1 1 -1 4275 4331 4331 4312 37.33 -18.67 -18.67

2 1 -1 -1 1 1 -1 -1 1 9635 9619 9504 9586 -49.00 -33.00 82.00

3 1 -1 1 -1 -1 1 -1 1 8055 7966 8045 8022 -33.00 56.00 -23.00

4 1 -1 1 1 -1 -1 1 -1 17831 16581 17534 17315 -515.67 734.33 -218.67

5 1 1 -1 -1 -1 -1 1 1 4973 5153 5213 5113 140.00 -40.00 -100.00

6 1 1 -1 1 -1 1 -1 -1 10943 10127 10037 10369 -574.00 242.00 332.00

7 1 1 1 -1 1 -1 -1 -1 10087 9142 9264 9498 -589.33 355.67 233.67

8 1 1 1 1 1 1 1 1 18440 18126 15765 17444 -996.33 -682.33 1678.67

Table 4: Factorial experiment for throughput, read-only workload

Alternatively the number of response time were put into Table 5.

Exp. Effects Response time Mean of yn Errors

i I A B C AB AC BC ABC yi3 yi1 yi2 yi ei1 ei2 ei3
1 1 -1 -1 -1 1 1 1 -1 44 44 44 44.00 0.00 0.00 0.00

2 1 -1 -1 1 1 -1 -1 1 19 19 20 19.33 0.33 0.33 -0.67

3 1 -1 1 -1 -1 1 -1 1 23 24 24 23.67 0.67 -0.33 -0.33

4 1 -1 1 1 -1 -1 1 -1 10 11 10 10.33 0.33 -0.67 0.33

5 1 1 -1 -1 -1 -1 1 1 38 37 36 37.00 -1.00 0.00 1.00

6 1 1 -1 1 -1 1 -1 -1 17 18 19 18.00 1.00 0.00 -1.00

7 1 1 1 -1 1 -1 -1 -1 19 21 21 20.33 1.33 -0.67 -0.67

8 1 1 1 1 1 1 1 1 10 10 6 8.67 -1.33 -1.33 2.67

Table 5: Factorial experiment for response time, read-only workload

Throughput analysis Response time analysis

Parameter Mean estimate Variation (%) Mean estimate Variation %

q0 10207.38 - 22.67 -

qA 398.46 0.74% -1.67 2.11%

qB 2862.29 38.25% -6.92 36.30%

qC 3471.13 56.25% -8.58 55.90%

qAB 2.54 0.00% 0.42 0.13%

qAC -170.63 0.14% 0.92 0.64%

qBC 838.71 3.28% 2.33 4.13%

qABC -166.21 0.13% -0.50 0.19%

Table 6: Allocation of variation, read-only workload

Table 6 contains the variations of factors for both response time and throughput. Overall
the results of variations are very similar to the ones from the write only workload. The average
value of throughput is at 10207.38 ops/sec, and average response time was at 22.67 msec.

Noticeably, the largest factors towards the variation of both throughput and middleware
were the number of worker threads, at 56.25% and 55.90% respectively. This is confirmed
by the baseline’s read only experiment, where the number of workers threads introduced the
significant speedup of performance. The second largest variation contributor was the number of

Name: IVAN TISHCHENKO Legi: 17-945-536 33

middlewares, 38.25% for throughput, 36.30 % fro response time, the numbers are higher than
in the write only workload similarly to the baseline experiment. Interactive effect of numer
of middlewares and worker threads was at 3.28% and 4.13%. Number of servers and other
interactive effects did not bring much variation again.

(a) Throughput (b) Response time

Figure 30: Variation chart, read only workload

6.3 Write-Read-50-50 workload analysis

The data of write-read experiment was recorded in tables 7 and 8.

Exp. Effects Measured throughput Mean of yn Errors

i I A B C AB AC BC ABC yi3 yi1 yi2 yi ei1 ei2 ei3
1 1 -1 -1 -1 1 1 1 -1 3305 3427 3710 3481 175.67 53.67 -229.33

2 1 -1 -1 1 1 -1 -1 1 7246 6901 7026 7058 -188.33 156.67 31.67

3 1 -1 1 -1 -1 1 -1 1 6710 6206 6621 6512 -197.67 306.33 -108.67

4 1 -1 1 1 -1 -1 1 -1 13483 12910 13217 13203 -279.67 293.33 -13.67

5 1 1 -1 -1 -1 -1 1 1 3106 3319 3054 3160 53.67 -159.33 105.67

6 1 1 -1 1 -1 1 -1 -1 6247 6413 6488 6383 135.67 -30.33 -105.33

7 1 1 1 -1 1 -1 -1 -1 5908 5194 5582 5561 -346.67 367.33 -20.67

8 1 1 1 1 1 1 1 1 12733 11740 5895 10123 -2610.33 -1617.33 4227.67

Table 7: Factorial experiment for throughput, write-read workload

Exp. Effects Response time Mean of yn Errors

i I A B C AB AC BC ABC yi3 yi1 yi2 yi ei1 ei2 ei3
1 1 -1 -1 -1 1 1 1 -1 58 56 51 55.00 -3.00 -1.00 4.00

2 1 -1 -1 1 1 -1 -1 1 26 27 27 26.67 0.67 -0.33 -0.33

3 1 -1 1 -1 -1 1 -1 1 28 31 29 29.33 1.33 -1.67 0.33

4 1 -1 1 1 -1 -1 1 -1 14 14 14 14.00 0.00 0.00 0.00

5 1 1 -1 -1 -1 -1 1 1 61 57 62 60.00 -1.00 3.00 -2.00

6 1 1 -1 1 -1 1 -1 -1 30 29 29 29.33 -0.67 0.33 0.33

7 1 1 1 -1 1 -1 -1 -1 33 37 35 35.00 2.00 -2.00 0.00

8 1 1 1 1 1 1 1 1 15 16 8 13.00 -2.00 -3.00 5.00

Table 8: Factorial experiment for response time, write-read workload

Name: IVAN TISHCHENKO Legi: 17-945-536 34

Throughput analysis Response time analysis

Parameter Mean estimate Variation (%) Mean estimate Variation %

q0 6935.04 - 22.67 -

qA -628.46 3.62% -1.67 0.92%

qB 1914.88 33.57% -6.92 38.23%

qC 2256.54 46.62% -8.58 55.90%

qAB -379.46 1.32% 0.42 0.05%

qAC -310.46 0.88% 0.92 0.49%

qBC 556.54 2.84% 2.33 2.83%

qABC -221.96 0.45% -0.50 0.11%

Table 9: Allocation of variation, write-read workload

Table 9 contains the variations of factors for the write-read workload. Average throughput
and response times were at 6935.04 ops/sec and 22.67 msec marks respectively. The behavior
remains the same as previously the number of worker threads is still the largest contributor to
variation at 46.62% for throughput and 55.9% for response time. The second largest variation
in introduced by the number of middlewares at similar marks for throughput and response time
at 37.6% and 38.8%, respectively. All other factors produced relatively minor contribution to
variation.

(a) Throughput (b) Response time

Figure 31: Variation chart, write-read workload

6.4 Summary

In conclusion, after performing the experiment on various types of workload we can state that
the largest contributor to variation is the number of worker threads. This result is confirmed
by the baseline and throughput for writes experiments, where we have seen large performance
boost with the increase of worker threads from 8 to 32. The second largest variation factor
was the number of middlewares, this behavior is confirmed by the baseline with middleware
experiment where we observed performance boost with the additional middleware component.

7 Queuing Model (90 pts)

Previous sections gave us the opportunity to explore the entire system’s performance on various
types of configurations, types of workloads as well as the individual components contribution.

Name: IVAN TISHCHENKO Legi: 17-945-536 35

However for better interpretation of system’s performance it makes sense to make use of numer-
ous experimental results and internal instrumentation to design theoretical models of various
types which could be later compared to the actual results. The need for such a model or even
a group of model arises.

The purpose of this section is dedicated towards the design of three models, namely M/M/1
model, M/M/m model and the network of queues model. Each model would be compared to
the actual data measured during the experiments as well as the performance of these models
would be compared against each other.

7.1 M/M/1

The modeling of the system starts with the M/M/1 model, which would be described in this
subsection. This model is the simplest of all three. The data which was used to design this
queuing model is based on section for throughput for writes. The modeling was repeated for
all worker threads configurations: 8, 16, 32, and 64 worker threads. It was decided to fix the
number of virtual client to 33 clients, because it is regarded as the mark when the system is
under the most pressure.

Figure 32: Modeling the system with M/M/1

Figure 32 represents the architecture of the model which was used. We can see that dur-
ing this setting only one M/M/1 queue represented the entire system during modeling. This
somewhat simplistic design will of course have the affect on the results, which are described
later.

Before building the M/M/1 model one has to acquire two parameters, namely jobs arrival
rate, notated as λ as well as the jobs service rate, notated as µ.

• To acquire λ the internal middleware instrumentation was used. Specifically the network
thread of the middleware records the number of jobs arriving to the system at the one
second interval. After obtaining all of the values of arrivals per seconds the average of
this list is taken. The average of all repetitions of these computed values provides us with
λ, which we later use for modeling.

There is however another way to calculate the arrival rate, which the courses book pro-
poses. Specifically arrival rate is total arrivals divided by total time. It was decided not
to use this metric due to sufficient instrumentation.

• Next the value of µ was obtained. The value represents the maximum throughput con-
figurations of the respective worker threads configurations. To get the value we need to

Name: IVAN TISHCHENKO Legi: 17-945-536 36

return back to throughput for writes experiment where one has to take the maximum
point of each of the throughput curves. Theses values are exactly the jobs service rates
for the corresponding worker threads configuration.

Little’s law was used to estimate the number of jobs located in the system, specifically mean
number in the system was defined as a product of arrival rate times mean time spent in the
system.

The modeling begins with the value of worker threads at 64, the results of modeling are
demonstrated at Table 10. The only input parameters for the model are jobs arrival rate which
is 7538.59 ops/sec and jobs service rate which was 8221 ops/sec.

The first parameter which has to be checked is ρ, in this case it is equal to 0.9170, the values
is rather high, however the value is lower than 1, which means the system is stable, but fairly
saturated. The large value of ρ is explained by the large number of virtual clients used for the
experiment, which put the pressure on the system. The throughput graphs from the section for
throughput for writes experiments confirm the value.

The metric of probability of zero jobs in this system has rather low value of only 0.0830.
Low value could be explained by large number of worker threads, specifically the tasks are
parallelized by the 64 worker threads, which means more jobs could be taken form the queue,
which causes the queue to be shorter on average. This behavior has been already confirmed by
the figures of queuing lengths in section on throughput for writes which were much lower for 64
worker threads compared to configurations with fewer worker threads.

Mean number of jobs in the system has reached the value of 11.047 which is significantly
lower than the estimation. The underestimation of the model could be explained by model’s
architecture. The entire system is modeled as just one single queue, apart from this the model
does not assume any noise coming from the network delays. The value is confined by the
idealistic view of this model, which assumes jobs enter and exit the single queue without delays
and do not accumulate inside the queue much.

The same tendency is as with mean number of jobs in the system is observed with mean
number of jobs in the queue. The model assumes that the majority of the jobs in the system
are located in the queue. However the real measurements demonstrate that only less than half
jobs are located in the queue. This could be again backed by the fact that this model does not
take network delays into account.

The value of 1.465 msec was predicted by the model, when it comes to the response time.
The value of the response time is lower than the predicted one. The estimation of mean waiting
time, on the other hand was closer to the measured value. This explained by the fact that
response times consists of multiple values, therefore the value converges more than other more
discrete metrics. Overall higher values of measured results are explained by network delays.

Name: IVAN TISHCHENKO Legi: 17-945-536 37

Metric description Variable Estimated results Measured results

Jobs arrival rate λ 7538.59 -

Jobs service rate µ 8221 -

Utilization ρ 0.9170 -

Probability of zero jobs in the system p0 0.0830 -

Mean number of jobs in the system E[n] 11.047 100.768 (estimation)

Mean number of jobs in the queue E[nq] 10.13 46

Mean response time E[r] 1.465 19.567

Variance of the response time V ar[r] 0.002147 -

Mean waiting time E[w] 1.3236 6.82

Variance of the waiting time V ar[w] 0.002132 -

Table 10: M/M/1 results comparison, 64 WT configuration

Further the same kind of modeling was performed with the 32 worker threads configurations,
the results of this modeling are show at Table 11. The jobs arrival rate was 7230.32 ops/sec
which is lower than in the previous case, the reason for this fewer worker threads, which are
correlated with the throughput as it was demonstrated during previous sections. In contrast the
value of jobs service rate has only slightly decreased compared to previous section, specifically
to 8177 jobs/sec.

The figures for utilization are at 0.8842, which means the system is stable, however higher
number indicates that the system is under heavy load. The value is very similar to the utiliza-
tion value from the configuration with 64 worker threads. This detail is confirmed by nearly
identical throughput and response time behavior, which was noticed during the corresponding
experiment. The lower value of utilization than the one with 64 worker, can be explained by
thread overhead which does not increase the performance significantly but rather introduces so
called competition between the threads on the 8 core machine.

Similarly to the previous configuration the figures for mean number of jobs in the system
from modeling are lower than the ones from the system. The same happens to mean number
of jobs in the queue it is lower than the measurement. The reasoning behind it is the same as
in the previous configurations. Despite lower modeled values the difference between number of
jobs in the system and queue is significantly less in the case with more worker threads. This
result is based on model’s naive assumption of more worker threads meaning significantly less
queuing.

Mean response time reached the value of 1.056 msec and mean waiting time was at 0.9340
msec. The most noticeable thing is that these values are lower than the same values from the real
measurements of the system, however the difference of the values of response time and waiting
time from modeling are similar to the ones from the real measurements. This is explained by
model’s assumption that waiting time is the largest contributor to response time. The real data
shows us that time spent in queue is indeed regarded as the one which contributes the most to
the response time.

Name: IVAN TISHCHENKO Legi: 17-945-536 38

Metric description Variable Estimated results Measured results

Jobs arrival rate λ 7230.32 -

Jobs service rate µ 8177 -

Utilization ρ 0.8842 -

Probability of zero jobs in the system p0 0.1158 -

Mean number of jobs in the system E[n] 7.63755 126.212 (estimation)

Mean number of jobs in the queue E[nq] 6.7533 106

Mean response time E[r] 1.056 21.991

Variance of the response time V ar[r] 0.00112 -

Mean waiting time E[w] 0.9340 18.66

Variance of the waiting time V ar[w] 0.0011 -

Table 11: M/M/1 results comparison, 32 WT configuration

Table 12 shows the results for the modeling with 16 worker threads. The arrival rate is
decreased to 5898.29 ops/sec compared to the previous configuration, so did jobs service rate to
6569 ops/sec. Lower arrival rate is explained by the fact that our is system is a closed system,
specifically if a client does not receive the response he would send another request, thus reducing
the amount of jobs arriving.

The utilization jumped up compared to the previous case and reached 0.8979, which is
explained by the reduction of worker threads by the factor of two.

Mean number of jobs in the system and mean number of jobs in the queue is again explained
by the model’s assumption of only one server, which is not the case for the real system which
contains a lot of jobs in the worker threads.

The same tendency holds for the very low discrepancies in response time and waiting time,
which was exactly the case in the measured results. Thus the response time and the waiting
time from the real measurements appear as the scaled version of the ones from modeling.

Metric description Variable Estimated results Measured results

Jobs arrival rate λ 5898.29 -

Jobs service rate µ 6569 -

Utilization ρ 0.8979 -

Probability of zero jobs in the system p0 0.1021 -

Mean number of jobs in the system E[n] 8.7940 139.677 (estimation)

Mean number of jobs in the queue E[nq] 7.896 150

Mean response time E[r] 1.491 28.77

Variance of the response time V ar[r] 0.0022 -

Mean waiting time E[w] 1.3387 27.18

Variance of the waiting time V ar[w] 0.0022 -

Table 12: M/M/1 results comparison, 16 WT configuration

The last configuration of worker threads for this model was the one with 8 worker threads,
similarly the results can be found at Table 13. Both input values of jobs arrival rate and jobs
service rate increased, 4894.72 ops/sec and 5347.67 ops/sec respectively.

The most noticeable thing is the increase of the utilization value which jumped to the value of
0.9153. This behavior was already observed during the corresponding experiment, specifically
the system at 8 worker threads was saturated a relatively low mark of clients and remained
saturated until 33 virtual clients mark and onwards.

Name: IVAN TISHCHENKO Legi: 17-945-536 39

Mean number of jobs in the queue as well as number of jobs in the system are lower than
the measured ones because of the one server assumption of the model, as it was the case in the
previous configuration.

The waiting time as well the response time of the model look again as the scaled versions of
the waiting time and the response times from the measurement. There is a very little difference
between the response times and waiting times at both modeling part and the measurements
one, which is again explained by model’s assumption that the response time mostly consists of
waiting time.

Metric description Variable Estimated results Measured results

Jobs arrival rate λ 4894.72 -

Jobs service rate µ 5347.67 -

Utilization ρ 0.9153 -

Probability of zero jobs in the system p0 0.0847 -

Mean number of jobs in the system E[n] 10.806 160.806 (estimation)

Mean number of jobs in the queue E[nq] 9.891 170

Mean response time E[r] 2.077 35.305

Variance of the response time V ar[r] 0.00487 -

Mean waiting time E[w] 2.0208 33.6

Variance of the waiting time V ar[w] 0.0048 -

Table 13: M/M/1 results comparison, 8 WT configuration

7.1.1 Summary

In conclusion, after performing the modeling for different worker thread configurations with
M/M/1 model one could agree that the model is too simplistic for the accurate modeling of
system’s measured parameters, although the proposed model was able to demonstrate the main
trends of the system such as system’s saturation and variability of the parameters under various
configurations.

The reasons for mismatching of some modeled parameters to the real ones could be explained
by the following properties of this model:

• The model assumes only one server, which clearly is not the case in our system which
was designed with the idea of multi-threading in mind. One server is simply not able to
accurately model larger number of threads, although still might show the overall utilization
trend.

• The propose model only makes use of two parameters, namely the value of arrival rate and
service rate. Only two values are simply not enough to model a complex multi-threaded
system

• The model does not take in regard the network delay part as well as various other hidden
factors which influence the performance of computer system.

7.2 M/M/m

After performing the modeling with the M/M/1 model we observed that it is not accurate to
model all worker threads with just one server.

Name: IVAN TISHCHENKO Legi: 17-945-536 40

Figure 33: Modeling the system with M/M/m

Therefore the need for the more accurate model which takes in regard each individual worker
threads of our multi-threaded software arises. This section will describe the results of modeling
using the M/M/m model.

The general architecture of the model proposed in the section is illustrated at 33. In this
model each worker thread of the midlewares was represented as one server. Therefore the
model which would be used in the rest of the section will be M/M/128. To be more specific,
128 corresponds to 128 worker threads, because 64 worker threads middleware configuration
was selected as best performing configuration. It was decided to vary the number of virtual
clients in the range of 33, 17 and 9 clients to explore the behavior of the system on different
loads.

In order to construct the M/M/64 model, one first has to acquire the following three pa-
rameters:

• Arrival rate λ. This metric is chosen as in the previous section and obtained from the
internal instrumentation rather than from the analytical expression. The value of arrival
rate is varied across the range of virtual clients.

• µ which stands for jobs service rate per server. This metric is similar to the jobs service
rate in the M/M/1 model, with the difference of taking in regard each server. The value
is fixed at 66 ops/sec per server, which the limit of throughput each worker thread on
average can do. The value obviously stays fixed for various cases of virtual clients.

• m the third parameter for the model is the number of servers parameter, which is 128 in
our case.

Firstly the modeling was performed on 33 virtual clients. The results are displayed at Table
14. The system achieve 0.89 at its utilization, which a similar values to the one in the M/M/1.
Relatively high value of utilization is explained by the fact that system is under heavy load at
that point, which makes sense with this number of clients.

Probability of zero jobs in the system is incredibly low, which is quite natural at this amount
of clients as well as it is backed by the plot of queue length in the section for throughput for
writes.

Name: IVAN TISHCHENKO Legi: 17-945-536 41

The probability of queuing is at 0.14. This value does not match the real-world scenario,
because it is inevitable that there would definitely be some queuing at the system. The plot of
queue length from the corresponding section as well as the corresponding instrumentation at
this configuration that there are always jobs in the queue.

Mean number of jobs in the system was at 115.4 ops/sec, which is very close to the estimated
value. Mean number of jobs in the queue was at the very low value of 1.174 jobs compared to
46 jobs measured from the experiments. Unlike the model in the previous section the M/M/m
model does not assume that most of the jobs in the systems are jobs in the queue, which
confirmed by real measurement, however not at such extreme as the modeling performed.

When it comes to response time model’s results are quite close to the ones measured on
the middleware, 15.31 msec and 19.567 msec respectively. In contrast the waiting time has
somewhat larger discrepancy. The model has the opposite behavior to the one the model in the
previous section produced. The M/M/m model assumes that the largest part of the response
time comes from time spend in worker threads, from the real measurements of our system, we
see that queuing time and memcached service time make equal contribution with queuing time
contributing a bit more.

Metric description Variable Estimated results Measured results

Jobs arrival rate λ 7538.59 -

Jobs service rate µ 66 -

Utilization ρ 0.89 -

Probability of zero jobs in the system p0 2.39E-50 -

Probability of queuing % 0.14 -

Mean number of jobs in the system E[n] 115.4 100.768 (estimation)

Mean number of jobs in the queue E[nq] 1.174 46

Mean response time E[r] 15.31 19.567

Variance of the response time V ar[r] 0.23 -

Mean waiting time E[w] 0.16 6.82

Variance of the waiting time V ar[w] 3.2E-4 -

Table 14: M/M/128 results comparison, VC = 33 configuration

Further, the number of virtual clients was reduced to 17. The results of modeling from such
a setting are showed at Table 15. The arrival rate has decreased to the value of 7194.246 ops/sec
due to the lower number of clients.

The value of utilization went down compared to the previous case. This explained by the
fact that less clients put less load on the system, therefore the value of utilization decreases.
The probability of zeros jobs in the system is slightly higher than in the previous configuration,
however it still remains absolutely insignificant, because at 17 virtual clients there were never
0 jobs spotted at the plots or logfiles. The probability of queuing has decrease compared to
the configuration with 33 virtual clients, which is a natural type of behavior to expect with the
decrease of virtual clients.

When it comes to response time the difference between the modeled value and the measured
value is not particularly large 15.19 msec and 10.389 msec respectively. The discrepancies of
waiting times from modeling and the measurements are a bit larger than from the case with
response times. However the difference between mean response time and mean waiting time
have the same trend on modeling and measurements, this is explained by the assumption of the
model that the queue is not full and that the majority of the jobs are in the workers threads,
which matches the real world scenario.

Name: IVAN TISHCHENKO Legi: 17-945-536 42

Metric description Variable Estimated results Measured results

Jobs arrival rate λ 7194.246 -

Jobs service rate µ 66 -

Utilization ρ 0.85 -

Probability of zero jobs in the system p0 4.53E-48 -

Probability of queuing % 0.05 -

Mean number of jobs in the system E[n] 109.29 44.576 (estimation)

Mean number of jobs in the queue E[nq] 0.282 7

Mean response time E[r] 15.19 10.389

Variance of the response time V ar[r] 0.23 -

Mean waiting time E[w] 0.039 1.13

Variance of the waiting time V ar[w] 6E-5 -

Table 15: M/M/128 results comparison, VC = 17 configuration

Finally, the system was modeled at the value of 9 virtual clients. The results of modeling
are shown at Table 16. The input parameter of jobs arrival rate was 6333.46 ops/sec.

The most noticeable thing is the value of utilization, which plummeted to 0.75 compared
to previous configurations. This demonstrates that the system is under less load. The value
continues to drop even more rapidly with the decrease of virtual clients, for instance at 1 clients
it was recorded at 0.26.

The probability of zero jobs in the system is larger compared to previous two configurations
however it remains astonishingly low, so is the probability of queuing, which is very low, in
contrast the measurements results where there are always jobs available in the queues and in
the system.

The number of jobs in the system and in the queues from model’s estimation were higher
than the measured values of the same value. The number of jobs in the queue was modeled at
the very low value. This matches the behavior of the real system which contained fewer jobs in
the queue than previous configurations. This due to the fact that model still assumes the jobs
spend a lot of time in the worker threads, which is less in the real system at his low mark of
clients.

The values for response time was modeled lower than the actual values from measurements.
This is because to model’s assumptions that it takes a lot of time for the memcached service
time and that the majority of the response time comes from it, which was actually the case
during the real experiment, where queuing time was very low at 9 clients and did not contribute
much to the response time.

Name: IVAN TISHCHENKO Legi: 17-945-536 43

Metric description Variable Estimated results Measured results

Jobs arrival rate λ 6333.46 -

Jobs service rate µ 66 -

Utilization ρ 0.75 -

Probability of zero jobs in the system p0 2.11E-42 -

Probability of queuing % 0.0011 -

Mean number of jobs in the system E[n] 95.96 16.548 (estimation)

Mean number of jobs in the queue E[nq] 0.0033 2

Mean response time E[r] 15.15 5.823

Variance of the response time V ar[r] 0.23 -

Mean waiting time E[w] 0.00053 0.63

Variance of the waiting time V ar[w] 5E-6 -

Table 16: M/M/128 results comparison, VC = 9 configuration

7.2.1 Summary

In conclusion, the modeling with the M/M/128 model demonstrated better results matching
than more simple M/M/1 model. The reason for this is the use of more servers to model each
worker threads. This fact gave better matching figures in terms of number of jobs as well as
the response and waiting times.

On our input parameters, unlike the M/M/1 model which assumed the majority of the re-
sponse time comes only from waiting time, the M/M/128 model considered the fact memcached
service time could be the largest contributor to the response time. In other words the M/M/1
model solely assumes the majority of the jobs should be located in the queue because it takes
very little for the server to process the jobs, in contrast M/M/128 demonstrates that in some
cases the majority of jobs could not only be located at the queue but at the worker threads as
well.

7.3 Network of Queues

During previous section we tried to perform the modeling with different simple models. We
attempted to view the entire system as just a single queue with just one single worker repre-
senting all the worker threads, as it was the case during the M/M/1 model. Next we brought
our model to the new level representing each worker threads with a server, however still having
just one single queue.

Despite of the fact that previous models demonstrated some common patterns with real
measurement of the system and shown overall trends with the change of the load and con-
figurations, these kind of simple models are not particularly useful for accurate performance
estimations.

Therefore the need for a more complex and accurate model arises. The way to construct a
more complex model is to network various types of queues which would take into consideration
various components of the system. The input parameters for the queues inside the network were
taken from the instrumentation of the middleware from section 3. Please note that for this
section’s modeling experiment form section 3 was repeated and the data from the
new run was used. In this section we would first design such a network network of queues,
later we will compare the results of such model to real components of the system. At the end
an analysis of the utilization of each component as well as the analysis of bottlenecks will be
performed with the MVA algorithm.

Name: IVAN TISHCHENKO Legi: 17-945-536 44

It was decided to fix the amount of worker threads in middlewares at 64 threads. The
modeling for read only and write only workloads were performed separately.

7.4 Single middleware

The network of queues consists of two parts, namely the modeling with a single middleware and
the modeling with double middlewares as it was the case during the corresponding experiments
in section 3. This section will describe the model which was created from the experiment with
single middleware.

Figure 34: Network of queues modeling, single middleware

Figure 34 illustrates the general architecture of the proposed model. The model which will
be used is the closed model, which means it has no external arrivals and departures. The
network component of our system will be modeled as the so called network device, which will
correspond to the single M/M/∞ queue. Service time for this device was acquired from the
network ping times from that experiment.

From the network queue the jobs will be forwarded to the NetThread queue, which is
represents the job queue of our middleware. The best way to model this component is to use
the M/M/1 queue, because the NetworkThread object could be represented by one server quite
accurately.

From the NetworkThread’s queue the jobs will go to worker queues. As it was observed
during previous modeling, experiments and from the experiment there is queuing behavior
happening in each worker threads. Therefore it was decided to represent each worker as M/M/1
queue. The service time was taken from the instrumentation.

It was decided not to represent the servers as separate queue elements, the reason for this
is the fact that the service times of the worker queues contain the part of the service time
of the memcached servers. Therefore, the corresponding M/M/1 queues not only attempt
to model the workers but also the memcached servers. The main reason for this decision is
the instrumentation, the data which was obtained during the experiments matches this set of

Name: IVAN TISHCHENKO Legi: 17-945-536 45

components. There are however other more complex ways to model the system, this however
requires more scrutinized instrumentation, which is beyond of the requirements scope.

(a) Throughput estimation (b) Response time estimation

Figure 35: Estimated throughput and response time, write only workload, single middleware

Figure 35 illustrates the results of modeling of the write only workload. One could observe
that the figures of estimated throughput and the measured one share similarities before the
mark of 30 clients. However the values of throughput begin to diverge after the 30 clients mark,
measured curve continues to go up rapidly and still remains the growth even at 70 clients, in
contrasts the modeled curve predicts the saturation after the mark of 30 clients.

The same behavior is observed with the response time curves. The theoretical curve esti-
mates the saturation at 30 clients however the real curve continues to grow linearly and does
not contain any knees, meaning the system is not close to saturation.

The behavior of lower figures of the model could be explained by the input parameters for
the modeling. The parameters which we inputed were taken from the measurements when the
system was not any close to saturation. Because of that the model predicted worse performance
than in reality, producing overall lower figures of throughout and larger figures of response time.

Name: IVAN TISHCHENKO Legi: 17-945-536 46

(a) Throughput estimation (b) Response time estimation

Figure 36: Estimated throughput and response time, read only workload, single middleware

Further the modeling for the read only workload was performed, the results are shown at
Figure 36. Overall, there is a better match of figures of both throughput and response time.
The throughput was predicted slightly higher than during the measurements unlike during the
write only workload.

The response time figures do not match as accurately as the throughput ones, however two
curves maintain identical order of growth. In general, the figures for read only experiment
gave better estimation than the write only ones, this is because the input parameters for the
model were taken from time when system was saturated, which did not cause underestimation
as before.

Write only workload Read only workload

Device name Queue type Xi Ui Xi Ui

Network M/M/∞ 3030 11.42000 6603 24.88388

Network thread M/M/1 3030 1.00000 6603 0.99044

Worker thread N M/M/1 47.348 0.11837 103.17 0.28578

Table 17: Network of queues modeling, single middleware

When it comes to finding the bottleneck of the system we should consider the values of
utilization of components, which could be found at Table 17. From the table once could observe
that the largest value of utilization came from the Network device at 11.42 and 24.88 for write
only and read only workloads respectively. Because this device has the largest value of utilization
it is regarded as the bottleneck. Next comes the network threads with the values close to 1 for
both read and write workloads. Worker threads have significantly less values of utilization of
0.12 and 0.29 respectively.

7.5 Double middlewares

It is now time to model the second configuration of the system of the same experiment. The
corresponding experiment used two middleware instances, this section will describe the proposed

Name: IVAN TISHCHENKO Legi: 17-945-536 47

model for the setting.

Figure 37: Network of queues modeling, double middleware

The general architecture of the constructed model is depicted at Figure 37. As previously it
was decided to represent the network as the network device, specifically the M/M/∞ queue was
chosen to simulate that device. From the infinity queue the jobs will follow into the middlewares.
It was decided to model each middleware separately with a M/M/1 instance for each. The choice
is motivated by the fact that two middlewares are independent components, which have their
own internal queues and not identical figures of internal measurements.

Each middleware’s network thread queue would guide the jobs into the worker threads
queues, which as previously be modeled as M/M/1 queue for each worker thread. in total
we would have 128 M/M/1 queues to represent all the workers threads in each middleware,
each having 64 worker threads in the pool. It was decided again not to model the memcached
servers as queues because the service times of the worker components already contains part of
the service time of the memcached servers. The system is again closed as during the previous
section.

Figure 39 demonstrates the results for modeling of the write only workload. The throughput
curve predicted lower figures of throughput before 50 clients, from 50 clients the throughput
values converged for the modeled curve and for the estimated one. The predicted values of
response time are predicted higher that the actual ones, however having similar order of growth.
Overall there is a match in the values, however from the model’s figures we can see that the
system begins to saturate in contrasts the real figures do not show signs of saturation.

Name: IVAN TISHCHENKO Legi: 17-945-536 48

(a) Throughput estimation (b) Response time estimation

Figure 38: Estimated throughput and response time, write only workload, double middleware

It was decided to redo the read only experiment from the section baseline with middleware
for better modeling. Originally the experiment was performed without proper population of the
databases, which resulted in high number of caches misses, which in return enhanced the values
of total throughput. The experiment was repeated so we could perform proper modeling.

(a) Throughput estimation (b) Response time estimation

Figure 39: Estimated throughput and response time, read only workload, double middleware

Figure 39 demonstrates the results of modeling during the read only workload. The through-
put number grew linearly exactly as the model predicted before 30 clients. However after the
value of 30 the real system began to saturate, in contrast the model still predicted growth of
throughput and no knee at response time. This model overestimates system’s performance.

Name: IVAN TISHCHENKO Legi: 17-945-536 49

Write only workload Read only workload

Device name Queue type Xi Ui Xi Ui

Network M/M/∞ 8836 33.29782 11272 34.96023

Network thread in MW 1 M/M/1 4418 0.96750 5636 0.30792

Network thread in MW 2 M/M/1 4418 0.80404 5636 0.13448

Worker thread N in MW 1 M/M/1 69.028 0.12977 88.063 0.17914

Worker thread N in MW 2 M/M/1 69.028 0.11942 88.063 0.20032

Table 18: Network of queues modeling, double middleware

Table 18 contains the values of utilization for the bottleneck analysis. From the table the
most observable device in terms of utilization is the network device which has the largest values
of utilization of 33.3 and 34.96 for write only and read only workloads. According to the largest
values of utilization this is the bottleneck of the setting. The network threads had the second
largest values of utilization, network thread of first middleware had the utilization of 0.97 during
write only mode and 0.31 during read only mode. The network thread of the second middleware
showed the utilization of 0.8 during write only and 0.13 during read only. The network threads
in both middleware showed overall similar utilization. One thing to notice is that during the
read only workload worker threads in the second middleware were more of a bottleneck than the
network thread in the corresponding configuration. This is explained by the fact that service
times of each middleware are not identical because of the cloud environment.

7.6 Summary

In conclusion, the modeling with the network of queues demonstrated better result match than
the previous models such as M/M/1 and M/M/128. The reason for better result match is the
fact that we model system’s components in detail, in contrast to more simple model where the
entire system was regarded as just one queue.

The network of queues model predicted the network as the largest bottleneck, however
during the experiments we could see that often other components were the bottlenecks. The
second largest bottleneck was the network thread, this behavior was frequently seen during the
experiments when the queues were full and the system was saturated.

Name: IVAN TISHCHENKO Legi: 17-945-536 50

	System Overview
	System's architecture
	Request handling
	Instrumentation

	Baseline without Middleware (75 pts)
	One Server
	Explanation

	Two Servers
	Explanation

	Summary

	Baseline with Middleware (90 pts)
	One Middleware
	Explanation

	Two Middlewares
	Explanation

	Summary

	Throughput for Writes (90 pts)
	Full System
	Explanation
	Determining the best configuration

	Summary

	Gets and Multi-gets (90 pts)
	Sharded Case
	Explanation

	Non-sharded Case
	Explanation

	Histogram
	Summary

	2K Analysis (90 pts)
	Write-only workload analysis
	Read-only workload analysis
	Write-Read-50-50 workload analysis
	Summary

	Queuing Model (90 pts)
	M/M/1
	Summary

	M/M/m
	Summary

	Network of Queues
	Single middleware
	Double middlewares
	Summary

