
Machine Perception 2018 – Project Report
Hand Joint Recognition

Ivan Tishchenko
ETH Zürich

tivan@student.ethz.ch

Mickey Vänskä
ETH Zürich

mickeyv@student.ethz.ch

ABSTRACT
The advances of scienti�c methods in the area of arti�cial intel-
ligence (e.g. computers becoming professional Go players) allow
researchers to turn dreams into reality. A known challenge in the
�elds of computer vision and machine learning is the extraction
of speci�c information from images and videos. One concrete ap-
plication is detecting people and related information in images, as
for instance human pose estimation or motion prediction to avoid
collisions in driverless cars. These �elds have seen increasing at-
tention lately, however there are relatively few papers available on
data extraction from speci�c body parts, such as hands. Hand pose
estimation proves to be a complex challenge due to the high rate
of self-occlusion and agile poses combined with the large number
of joints concentrated in a small volume. This project explores the
use of various CNNs for annotating respective joints in images
of hands and concludes a modi�ed Inception-ResNet-v2 to be the
�ttest. In direct comparison with a custom ResNet34, the network
is expected to perform better by being a continuation of Residual
Networks combined with Inception, thus extracting more features
at each step. A CPM was also designed and showed a shallower
accuracy slope at later epochs. Suprisingly, in the case of Resid-
ual Networks more layers led to worse performance. Even though
Residual Networks and Inception-ResNet-v2 were designed for clas-
si�cation tasks, their use in regression tasks is still a viable solution.
Our results demonstrate the viability of Inception-ResNet-v2 in the
scope of joint estimation and we expect to see further work based
on them in the �eld of pose estimation. Generally we expect to see
more network designs in the future which allow generic feature
extraction and are easily adaptable with high accuracy for many
tasks. However, specialized networks will always exist for very
high accuracy.

1 INTRODUCTION
In recent years advances in natural language understanding have
led to a rise in voice-recognition systems from various companies
with human-level performance in understanding commands and
synthesizing human voices to respond.

The interaction in such cases is based solely on audio and as
such not universally usable by those with hearing impairments or
in noisy environments. An alternative would be using computer
vision where communication occurs through sign language or by
mapping hand poses to speci�c user-de�ned commands.

We begin by presenting relevant CNNs, their use in pose estima-
tions and recent results in its domain. What follows is a description
of our model we used to detect hand joints with a summary on
results and accompanying discussion. Finally, we summarize our
�ndings as well as suggest areas which are likely to lead to �tter
models.

2 RELATEDWORK
Current state of the art convolutional networks for image classi�ca-
tion are Inception-v3 [10] and Inception-v4 with Inception-ResNet
[9] developed by Szegedy et al. The latter network design is an
amalgamation of the core principle of Inception-v1 and Residual
Networks [4] invented by He et al. Residual Networks are the �rst
successful approach to very deep convolutional neural networks
for image classi�cation which can easily scale to hundreds of lay-
ers and adapt to various classi�cation tasks while being robust to
vanishing gradients by heavy use of identity connections.

In human pose estimation work by Wei et al. is used heavily. The
authors use a variant of VGGNet [8] combined with heatmaps to
predict joint locations using Convolutional Pose Machines (CPM)
[11]. CPMs were �rst designed to predict skeletal body poses, how-
ever adaptations have been made and included as part of pipelines
to predict hand poses as in work by Zimmermann and Brox. The
authors’ approach supersedes our project’s task by predicting 3D
models of hands from a single RGB image [12] without the use of
3D depth data. The design of Convolutional Pose Machines is not
restricted to using VGGNet as Insafutdinov et al. have shown with
DeeperCut [6] by relying on a modi�ed ResNet152.

Stacked Hourglass Networks [7] were investigated by Newell
et al. to extract human pose estimation from single RGB images.
Their network repeatedly downsamples and upsamples the input
image in hourglass blocks and regresses using heatmaps joint lo-
cations. A combination based on Residual Networks and Stacked
Hourglass Networks was envisioned by Bulat and Tzimiropoulos.
Their design uses a part detector network followed by a part re-
gression network.

3 METHOD
3.1 Problem Analysis
The task is, given an image representation I ∈ R3×M×N , to predict
21 joint locations of the hand wi = (xi ,yi ), where i ∈ {1 . . . 21}.
Concretely in our case, 1 root point of the hand and 5 × 4 �nger
joints on RGB images of size 128 × 128 pixels where the hand is
tightly cropped from source images of size 320 × 320 and scaled to
the respective size.

The dataset [13] consists of 57’466 images of size 320 × 320 with
accurately annotated joints for training as well as joint visibility
information (excludes self-occlusion). A validation set consisting of
8’610 images is created from these 57’466 images. Predictions are
generated for 3’611 tight crops of size 128 × 128.

3.2 Training Methodology
Networks are trained using L2-loss on all joint predictions from
ground truth labels. A secondary metric based only on visible joints
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is also calculated, and for each L2-loss accuracy scores are evaluated
where each prediction in the vicinity of 2px (Euclidean distance)
from the ground truth is marked as a positive result.

Batch sizes are set at 8, and AdamOptimizer is used with a �xed
learning rate of 1e-4 at training time. Epochs are determined em-
pirically on a per-network basis.

3.3 Model Selection
Multiple designs are explored based on work done by Wei et al.
(Convolutional Pose Machines), Szegedy et al. (Inception-v3), He
et al. (ResNet) & Szegedy et al. (Inception-ResNet-v2).

The evaluated Convolutional Pose Machine (CPM) uses 3 repet-
itive blocks as described in Figure 2 of [11] with 128 features ex-
tracted in each map and kernels of size 5 × 5. 22 heatmaps are
predicted, 21 single joint locations and one with all joints sub-
tracted to be used as background. To train the network each joint
(xi ,yi ) of ground-truth labels is transformed into a heatmap of size
16 × 16 with a 2D-Gaussian with σ = 1 at the respective coordi-
nate and one background map. The network is trained using an
L2-loss on predicted and ground-truth heatmaps using intermediate
supervision to prevent vanishing gradients. Predictions are gener-
ated by upscaling predicted heatmaps bicubicly and extracting the
maximum of each respective heatmap as an (xi ,yi ) coordinate.

The Residual Network architecture is a modi�ed ResNet34 with
average pooling removed and using N × [Conv BatchNorm ReLU]
in basic building blocks (N being subject to the block type; for our
approach N = 2). The last ReLU is discarded in building blocks as
it shows to increase predictions in classi�cation tasks as per [2].
Predictions are generated by �attening the output and adding one
fully connected layer with 42 neurons before reformatting them to
(xi ,yi ) i = {1 . . . 21}. The network is trained using an L2-loss on
the predictions and ground-truth labels.

Using Inception-ResNet-v2 requires modi�cations to the stem
and due to larger expected images (299 × 299) kernels of size 7 are
scaled down to 5. The last MaxPool operation in Figure 3 of [9] is
modi�ed to not downscale by applying two convolutional blocks
with 3× 1 kernels. Activation scaling as shown in Figure 20 is set to
0.17 in Figure 16, 0.1 in Figure 17 and 0.2 in Figure 19 from [3]. Each
convolution (unless linear) is followed by batch normalization and
Leaky ReLU with α = 0.01. Lastly the average pooling layer is set
to not scale down but keep dimensions before �attening, using 42
output neurons and reformatting as with our ResNet34 architecture.
Training and predicting are identical for both networks.

Inception-v3 is a stock implementation of the architecture from
[10]. Global average pooling is used at the end. Training and pre-
diction procedures are identical to ResNet34.

3.4 Data Augmentation
We experienced the tendency that the networks over�t during
training time by converging with their value of the loss function
towards 0, which is a known indication of over�tting. To solve
this issue a randomization step is introduced during image feeding
time to randomly sample from X ∼ Bern(p) on a sliding window
of 4’000 images for the current batch. Additionally, each image is
subject to being augmented with a probability pauд = 3

10 using the
following ordering of operations: rotate [-90°, 90°], shear [-15°, 15°],

Depth/Customization (Epochs) Kaggle-Score

34/None (16) Weak performance (aborted)
34/lR, avg_same 93.97
34/lR, fPre, avg_same 107.54
68/DeeperCut 103.43
34/B, -avg 108.99
34/-avg 89.28
Table 1: ResNet scores at 45 epochs, batch size 8 and similar
data augmentation. Legend: lR = Leaky ReLU (α = 0.01); -avg =
removal of average pooling; avg_same = average pooling with
same padding; fPre = full pre-activation blocks; B = bottleneck

blocks; DeeperCut = shallower variant of [6] with our
training/prediction approach.

Network (Epochs) Public Private

CPM (40) 86.37 85.09
Inception-v3 (40) 125.98 125.66
ResNet34 (55) 84.21 81.75
Inception-ResNet-v2 (108) 61.15 59.71

Table 2: Summary of �nal Kaggle scores for best network
per architecture explored.

tight-crop, rescale, �ip-horizontal, �ip-vertical, contrast [0.8, 1.2],
brightness [0.8, 1.2], dropout and salt-and-pepper (each operation
performed with probability pop = 1

2 on augmentation, operations
in bold with pop = 1 disregarding augmentation). Operations in
cursive verify joints not escaping the image. Should this occur then
the operation is rolled back.

4 RESULTS
Table 1 show various variants of ResNet performing di�erently
well at regressing hand poses using similar augmentation strategies
(the last two do not apply salt-and-pepper & dropout and have
pauд =

1
2 ). The last run is chosen for further comparisons.

Table 2 summarizes the scores on Kaggle and training epochs
for our network implementations.

Figure 1a shows the loss function of the best performing model
(Inception-ResNet-v2) over 108 epochs. Its prediction accuracy can
be seen in Figure 1d.

Training and validation losses of our four networks are presented
in Figures 1b and 1c. Figures 1e and 1f give respective accuracy
benchmarks. Graphs are clipped at 40 epochs to allow easy com-
parisons.

5 DISCUSSION
Considering the comparison of losses for our best model (Figure 1a)
at training and validation time, it is clear that the model started
to converge towards the optimal state which may have not been
reached even after 108 epochs of training. Another indicator is the
increasing prediction accuracy at training and testing time. Signif-
icant gains through additional training are not expected without
giving the network new data. In comparison to other networks at
45 epochs it gave an accuracy with the largest slope while having
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(a) Inception-ResNet-v2 loss (108 epochs). (b) Comparison of L2-loss at training time. (c) Comparison of L2-loss at validation time.

(d) Inception-ResNet-v2 accuracy (108 epochs). (e) Comparison of accuracy at training time. (f) Comparison of accuracy at validation time.

Figure 1: Score metrics of Inception-ResNet-v2 and direct comparisons of it with ResNet34, our CPM and Inception-v3.

the lowest loss. Therefore, it was decided to continue to train it for
another 63 epochs.

Su�ciently good results were delivered by our ResNet34 as de-
scribed earlier. The network’s loss was the third smallest and is
directly comparable to Inception-ResNet-v2 by using the same ap-
proach to loss calculations. The loss was consistently higher while
the accuracy was overall lower. This network also trained quicker
than Inception-ResNet-v2 but due to di�erent GPUs used, no com-
parable numbers were produced in time.
Comparing di�erent ResNet implementations it is interesting to
observe the bottleneck layers which resulted in much worse pre-
dictions for the same network as well as advanced techniques
presented by He et al. [5] detrimentally a�ecting network per-
formances. The use of Leaky ReLUs is uncertain as of this point,
further investigation is required to exclude side-e�ects of the last
layer (Table 1) however there was not enough time for this. The last
observation which is of interest and lacked time for thorough in-
vestigation as well is the shallower implementation of Insafutdinov
et al. [6] to perform worse than our ResNet34.

Our CPM performed the best for low-epoch runs. Accuracy
scores were much higher than any other network while the loss was
the lowest. This behaviour is of debate to result in good scores for
many epochs as accuracy and loss plateau signi�cantly. Neverthe-
less, Kaggle scores evaluated at 20, 30 and 40 epochs (94.89, 97.51,
and 86.37) showed increases in performance. Modi�cations to our
CPM (increasing the depth, using larger heatmaps) are expected to
increase the �tness.

Inception-v3 exhibited the worst evaluation metrics. The loss
decreased less rapidly and �nished with overall higher values. A
similar accuracy as ResNet34, but higher loss con�rmed the received
Kaggle score.

Of interesting note was that validation losses did not map with
the Kaggle score. The generated validation set and the test images
are therefore from di�erent distributions.

The scores received on Kaggle (Table 2) show minor di�erences
except for ResNet34. Overall, model predictions are robust and
exhibit predictable performance for future tasks.

6 CONCLUSION
In our work we have shown the use of a modi�ed Inception-ResNet-
v2 to be a viable alternative to Convolutional Pose Machines in
detecting hand joints in images. The performance and �tness of
the model show promising results and make it an interesting candi-
date for future networks on the task of 2D hand pose estimation
from single RGB images. With the network being a complex ar-
chitecture we would like to note its low training throughput in
comparison to the other three designs. An interesting approach
would be to take the work designed by Bulat and Tzimiropoulos
and have Inception-ResNet-v2 as the part regression network. More
involved approaches would include using a model of a hand which
is morphed into the prediction of the network and veri�ed to be a
reachable pose according to human anatomy. Using this network on
videos of hands instead of single RGB images would need further
modi�cations to get smooth predictions with the help of a recurrent
network. As of now this network would likely result in high scores
for single RGB image poses but sequences of hand-motions are still
to be researched. Finally, using our network as the 2D detector of
Zimmermann and Brox [12] could boost the generated 3D models
signi�cantly.
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